1
|
Asghariazar V, Amini M, Pirdel Z, Fekri R, Asadi A, Nejati-Koshki K, Baradaran B, Panahi Y. The Schiff base hydrazine copper(II) complexes induce apoptosis by P53 overexpression and prevent cell migration through protease-independent pathways. Med Oncol 2023; 40:271. [PMID: 37594547 DOI: 10.1007/s12032-023-02150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Although chemotherapy has increased the life expectancy of cancer patients, its toxic side effects remain a major challenge. Recently, organometallic compounds, such as Schiff base copper complexes, have become promising candidates for next-generation anticancer drugs owing to their unique anticancer activities. In this study, binuclear copper(II) complex-1 and mononuclear copper(II) complex-2 were examined to analyze their anticancer mechanisms further. For this purpose, a viability test, flow cytometry analysis of apoptosis and the cell cycle, migration assay, and gene expression analysis were performed. According to our results, complex-1 was more cytotoxic than complex-2 at 24/48-h intervals. Our findings also demonstrated that both complexes induced apoptosis at IC50 concentrations and arrested the cell cycle at the G1-S checkpoint. However, complex-1 accelerates cell cycle arrest at the sub-G0/G1 phase more than complex-2 does. Furthermore, gene expression analysis showed that only complex-1 induces the expression of p53. Interestingly, both complexes induced Bcl-2 overexpression. However, they did not affect MMP-13 expression. More interestingly, both complexes inhibited cell migration in different ways, including amoeboid and collective, by recruiting protease-independent pathways. This study confirmed that adding several metal cores and co-ligands increased the activity of the complex. It also appeared that Cu-containing complexes could prevent the migration of cancer cells through protease-independent pathways, which can be used for novel therapeutic purposes.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pirdel
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roghayeh Fekri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, 5816753464, Iran.
| |
Collapse
|
2
|
Sundaresan S, Kühne IA, Evesson C, Harris MM, Fitzpatrick AJ, Ahmed A, Müller-Bunz H, Morgan GG. Compressed Jahn-Teller octahedra and spin quintet-triplet switching in coordinatively elastic manganese(III) complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Patel A, Jadeja R, Roy H, Patel R, Patel S, Butcher R, Cortijo M, Herrero S. Copper(II) hydrazone complexes with different nuclearities and geometries: Synthesis, structural characterization, antioxidant SOD activity and antiproliferative properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Aghaei M, Kianfar AH, Dinari M. Catalytic reduction of 4‐nitrophenol by means of nanostructured polymeric Schiff base complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marjan Aghaei
- Department of ChemistryIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Ali Hossein Kianfar
- Department of ChemistryIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Mohammad Dinari
- Department of ChemistryIsfahan University of Technology Isfahan 84156‐83111 Iran
| |
Collapse
|
5
|
DNA and HSA interaction of Vanadium (IV), Copper (II), and Zinc (II) complexes derived from an asymmetric bidentate Schiff-base ligand: multi spectroscopic, viscosity measurements, molecular docking, and ONIOM studies. J Biol Inorg Chem 2017; 23:181-192. [PMID: 29119261 DOI: 10.1007/s00775-017-1505-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/28/2017] [Indexed: 12/15/2022]
Abstract
The interaction of three complexes [Zn(II), Cu(II), and V(IV)] derived from an asymmetric bidentate Schiff-base ligand with DNA and HSA was studied using fluorescence quenching, UV-Vis spectroscopy, viscosity measurements, and computational methods [molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM)]. The obtained results revealed that the DNA and HSA affinities for binding of the synthesized compounds follow as V(IV) > Zn(II) > Cu(II) and Zn(II) > V(IV) > Cu(II), respectively. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational molecular docking was carried out to investigate the DNA- and HSA-binding pose of the compounds. Molecular docking calculations showed that H-bond, hydrophobic, and π-cation interactions have dominant role in stability of the compound-HSA complexes. ONIOM method was utilized to investigate the HSA binding of the compounds more precisely in which molecular-mechanics method (UFF) and semi-empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding, indicating the strong interaction between the compounds with HSA and DNA. Viscosity measurements as well as computational docking data suggest that all metal complexes interact with DNA, presumably by groove-binding mechanism.
Collapse
|
6
|
Khalaji AD, Fejfarova K, Dušek M. Crystal structures of novel bis-NO-acyclic Schiff base compounds. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615070239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abdel-Haleem FM, Shehab OR. Comparative Study of Carbon Paste, Screen Printed, and PVC Potentiometric Sensors Based on Copper-sulphamethazine Schiff Base Complex for Determination of Iodide - Experimental and Theoretical Approaches. ELECTROANAL 2015. [DOI: 10.1002/elan.201500578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Halevas E, Nday CM, Kaprara E, Psycharis V, Raptopoulou CP, Jackson GE, Litsardakis G, Salifoglou A. Sol-gel encapsulation of binary Zn(II) compounds in silica nanoparticles. Structure-activity correlations in hybrid materials targeting Zn(II) antibacterial use. J Inorg Biochem 2015. [PMID: 26198972 DOI: 10.1016/j.jinorgbio.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.
Collapse
Affiliation(s)
- E Halevas
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C M Nday
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Chemistry, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
| | - E Kaprara
- Laboratory of Analytical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - V Psycharis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - C P Raptopoulou
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
| | - G E Jackson
- Department of Chemistry, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
| | - G Litsardakis
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
9
|
Montazerozohori M, Musavi SA, Naghiha A, Zohour MM. Some new nano-structure zinc(II) coordination compounds of an imidazolidine Schiff base: spectral, thermal, antimicrobial properties and DNA interaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:382-391. [PMID: 24747864 DOI: 10.1016/j.saa.2014.03.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Some novel nano-sized structure zinc complexes of a new Schiff base ligand entitled as (3-nitro-benzylidene)-{2-[2-(3-nitro-phenyl)-imidazolidine-1-yl]-ethyl}-amine(L) with general formula of ZnLX2 wherein X=Cl(-), Br(-), I(-), SCN(-) and N3(-) have been synthesized under ultrasonic conditions. The ligand and its complexes have been characterized by elemental analysis, molar conductance measurements, FT-IR, (1)H and (13)C NMR and UV-Visible spectroscopy. The resulting data from spectral investigation especially (1)H and (13)C NMR well confirmed formation of an imidazolidine ring in the ligand structure. Transmission electron microscopy (TEM) showed nano-size structures with average particle sizes of 21.80-78.10nm for the zinc(II) Schiff base complexes. The free Schiff base and its Zn(II) complexes have been screened in vitro both for antibacterial activity against some gram-positive and gram-negative bacteria and also for antifungal activity. The metal complexes were found to be more active than the free Schiff base ligand. The results showed that ZnL(N3)2 is the most effective inhibitor against Escherichia coli, Pseudomonas aereuguinosa, Staphylococcus aureus and Candida albicans while ZnLBr2 was found to be more effective against Bacillus subtillis than other compounds. Moreover, DNA cleavage potential of all compounds with plasmid DNA was investigated. The results showed that the ligand and ZnLCl2 complex cleave DNA more efficiently than others. In final, thermal analysis of ligand and its complexes revealed that they are decomposed via 2-3 thermal steps in the range of room temperature to 1000°C. Furthermore some activation kinetic parameters such as A, E(*), ΔH(*), ΔS(*) and ΔG(*) were calculated based on TG/DTA plots by use of coats - Redfern relation. Positive values of activation energy evaluated for the compounds confirmed the thermal stability of them. In addition to, the positive ΔH(*), and ΔG(*) values suggested endothermic character for the thermal decomposition steps.
Collapse
Affiliation(s)
| | | | - Asghar Naghiha
- Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mostafa Montazer Zohour
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
10
|
Synthesis, characterization, electrochemical behavior, thermal study and antibacterial/antifungal properties of some new zinc(II) coordination compounds. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kianfar AH, Ramazani S, Fath RH, Roushani M. Synthesis, spectroscopy, electrochemistry and thermogravimetry of copper(II) tridentate Schiff base complexes, theoretical study of the structures of compounds and kinetic study of the tautomerism reactions by ab initio calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:374-382. [PMID: 23333691 DOI: 10.1016/j.saa.2012.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Attempts to spectroscopic and structural study of copper complexes, some Cu(II) Schiff base complexes were synthesized and characterized by means of electronic, IR, (1)HNMR spectra and elemental analysis. The thermal analyses of the complexes were investigated and the first order kinetic parameters were derived for them. The cyclic voltammetric studies in acetonitrile were proposed a monomeric structure for complexes. The structures of compounds were determined by ab initio calculations. In the solid state, the ligands exist as keto-amine/enol-imine tautomeric forms with an intramolecular hydrogen bond (N-H···O) between amine and carbonyl group. The kinetic studies of the tautomerism and equilibrium constant of the reactions were calculated using transition state theory. The optimized molecular geometry and atomic charges were calculated using MP2 method with 6-31G(d) basis set for H, C, N and O atoms and LANL2DZ for the Cu atom. The results suggested that, in the complexes, Cu(II) ion is in pseudo square-planar NO(3) coordination geometry. Also the bond lengths and angles were studied and compared.
Collapse
Affiliation(s)
- Ali Hossein Kianfar
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | | | | |
Collapse
|