1
|
Sherefedin U, Belay A, Gudishe K, Kebede A, Kumela AG, Asemare S. Photophysical Properties of Sinapic Acid and Ferulic Acid and Their Binding Mechanism with Caffeine. J Fluoresc 2024:10.1007/s10895-024-03689-7. [PMID: 38592595 DOI: 10.1007/s10895-024-03689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Sinapic acid (SA) and ferulic acid (FA) are bioactive compounds used in the food, pharmaceutical, and cosmetic industries due to their antioxidant properties. In this work, we studied the photophysical properties of SA and FA in different solvents and concentrations and their interactions with caffeine (CF), using ultraviolet-visible (UV-Vis), fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The findings show that the quantum yield, fluorescence lifetime, radiative decay rates, and non-radiative decay rates of SA and FA are influenced by the concentrations and solvent polarity. The interaction between SA and FA with CF was also studied using UV-Vis and fluorescence spectroscopy. The results indicate that the CF quenched the fluorescence intensity of SA and FA by static quenching due to the formation of a non-fluorescent complex. The van't Hoff equation suggests that the van der Waals forces and hydrogen bonds force were responsible for the interaction between SA and CF, as indicated by a negative change in enthalpy (Δ H o < 0) and a negative change in entropy (Δ S o < 0). On the other hand, the interaction between FA and CF was primarily controlled by electrostatic force, as indicated by a negative change in enthalpy (Δ H o < 0) and a positive change in entropy (Δ S o > 0). The negative change in Gibbs free energy (Δ G o ) indicates that both compounds underwent a spontaneous binding process.
Collapse
Affiliation(s)
- Umer Sherefedin
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Abebe Belay
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Kusse Gudishe
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University, P.O. Box 165, Jinka, Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tullu Awulia, P.O. Box 32, Amhara, Ethiopia
| | - Alemu Kebede
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University, P.O. Box 165, Jinka, Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tullu Awulia, P.O. Box 32, Amhara, Ethiopia
| | - Semahegn Asemare
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
2
|
Joshi A, Acharya S, Devi N, Gupta R, Sharma D, Singh M. A polyoxomolybdate-based hybrid nano capsule as an antineoplastic agent. NANOSCALE ADVANCES 2023; 5:6045-6052. [PMID: 37941962 PMCID: PMC10628982 DOI: 10.1039/d3na00459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Polyoxometalates (POMs) are versatile anionic clusters which have attracted a lot of attention in biomedical investigations. To counteract the increasing resistance effect of cancer cells and the high toxicity of chemotherapeutic treatments, POM-based metallodrugs can be strategically synthesized by adjusting the stereochemical and physicochemical features of POMs. In the present report a polyoxomolybdate (POMo) based organic-inorganic hybrid solid (C6H16N)(C6H15N)2[Mo8O26]·3H2O, solid 1, has been synthesized and its antitumoral activities have been investigated against three cancer cell lines namely, A549 (Lung cancer), HepG2 (Liver cancer), and MCF-7 (Breast cancer) with IC50 values 56.2 μmol L-1, 57.3 μmol L-1, and 55.2 μmol L-1 respectively. The structural characterization revealed that solid 1 consists of an octa molybdate-type cluster connected by three triethylamine molecules via hydrogen bonding interactions. The electron microscopy analysis suggests the nanocapsule-like morphology of solid 1 in the size range of 50-70 nm. The UV-vis absorption spectra were used to assess the binding ability of synthesized POM-based solid 1 to calf thymus DNA (ctDNA), which further explained the binding interaction between POMo and ctDNA and the binding constant was calculated to be 2.246 × 103 giving evidence of groove binding.
Collapse
Affiliation(s)
- Arti Joshi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Sobhna Acharya
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Neeta Devi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Monika Singh
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| |
Collapse
|
3
|
Gökoğlu E, Kıpçak F, Taskin-Tok T, Duyar H, Seferoğlu Z. Structural analysis and calf thymus DNA/HSA binding properties of new carbazole derivative containing piperazine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Joshi A, Gupta R, Sharma D, Singh M. A Mo(VI) based coordination polymer as an antiproliferative agent against cancer cells. Dalton Trans 2021; 50:1253-1260. [PMID: 33410831 DOI: 10.1039/d0dt03865b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions being an important part of biological systems are of great interest in the designing of new drugs. Molybdenum is an essential trace element for humans, animals, and plants and naturally present in many enzymes hence its complexes can be expected to serve as potential candidates for biomedical applications. A novel molybdenum-based coordination polymer, [Mo2(μ2-O)O4(2-pyc)2(H2O)], is synthesized by a hydrothermal route and structurally characterized by using single crystal X-Ray diffraction. The structure consists of molybdenum octahedra connected by a bridging oxo ligand and 2-pyc forming a one-dimensional coordination polymer. This Mo coordination polymer was found to show a considerable inhibitory effect with IC50 values of 22.63 μmol L-1, 28.19 μmol L-1, and 20.97 μmol L-1, against HepG2 (human liver cancer), A549 (human lung cancer), and MCF-7 (human breast cancer) cell lines respectively. This is the first attempt at exploring the molybdenum-based coordination polymer for antitumor applications. The cell cytotoxicity analysis revealed that the anti-tumor potential of the compound is governed by arresting of the A549, HepG2, and MCF-7 cancer cells in the S phase of the cell cycle. UV-Visible absorption spectroscopy further revealed the binding interaction between the Mo coordination polymer and ctDNA and the binding constant was found to be 5.9 × 103 L mol-1, which is in agreement with those of well-known groove binders. This binding interaction in turn induces apoptosis and necrosis pathways leading to the death of the cancer cells.
Collapse
Affiliation(s)
- Arti Joshi
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| | - Ruby Gupta
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| | - Deepika Sharma
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-64, Phase-10, Mohali-160062, Punjab, India.
| |
Collapse
|
5
|
Mondal P, Sengupta P, Pal U, Saha S, Bose A. Biophysical and theoretical studies of the interaction between a bioactive compound 3,5-dimethoxy-4-hydroxycinnamic acid with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118936. [PMID: 32977108 DOI: 10.1016/j.saa.2020.118936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
3,5-Dimethoxy-4-hydroxycinnamic acid commonly known as Sinapic acid is a well-known derivative of hydroxycinnamic acids, is commonly present in human diet. Due to its wide variety of pharmacological activities like antioxidant, antimicrobial, anti-inflammatory, anticancer, and anti-anxiety, it has attracted much attention for the researchers. In our previous published work we have already analyzed the interaction between sinapic acid (SA) with a model transport protein. In this work our aim is to demonstrate a detailed investigation of the binding interaction between sinapic acid with another carrier of genetic information in a living cell, the DNA. Here we have used calf thymus DNA (ct-DNA) as a model. The binding characteristic of SA with ct-DNA was investigated by different spectroscopic and theoretical tools. The spectroscopic investigation revealed that quenching of intrinsic fluorescence of SA by ct-DNA occurs through dynamic quenching mechanism. The thermodynamic parameters established the involvement of hydrogen bonding and weak van der Waals forces in the interaction. Further, the circular dichroism, competitive binding experiment with ethidium bromide and potassium iodide quenching experiment suggested that SA possibly binds to the groove position of the ct-DNA. Finally, molecular docking analysis established the SA binds to minor groove position of ct-DNA in G-C rich region through hydrogen bonding interaction. Additionally, gel electrophoresis analysis has been performed to determine the protective efficacy of SA against UVB induced DNA damage and 50 μM of SA was found to protect the DNA from UVB induced damage. We hope that our study could provide the validation of SA on behalf of therapeutics and development of next generation therapeutic drug as well as designing new efficient drug molecule and methodology for the interaction study of the drug with DNA.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Priti Sengupta
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, India
| | - Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Adity Bose
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Barkhudaryan VG, Ananyan GV. Development of viscometric methods for studying the interaction of porphyrins with DNA. J Biomol Struct Dyn 2020; 38:3489-3495. [DOI: 10.1080/07391102.2019.1660217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Gayane V. Ananyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
7
|
Maurya N, Imtiyaz K, Alam Rizvi MM, Khedher KM, Singh P, Patel R. Comparative in vitro cytotoxicity and binding investigation of artemisinin and its biogenetic precursors with ctDNA. RSC Adv 2020; 10:24203-24214. [PMID: 35516214 PMCID: PMC9055135 DOI: 10.1039/d0ra02042g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Artemisinin (ART) and its biogenetic precursors artemisinic acid (AA) and dihydroartemisinic acid (DHAA) are important traditional medicinal herb compounds with tumor growth inhibition properties. Herein, we have studied the cytotoxicity of ART, AA, and DHAA on different cancer cell lines (H1299, A431, and HCT 116) and investigated in detail their binding mechanisms with ctDNA by using spectroscopy, cyclic voltammetry, and computational methods. The UV absorbance, cyclic voltammetry, DNA helix melting, competition binding, and circular dichroism studies suggested that the complex formation of ART-ctDNA and AA-ctDNA occurs through groove binding. However, in the case of DHAA-ctDNA interaction, electrostatic interaction plays a major role. The thermodynamic parameters, viz., ΔG 0, ΔH 0, and ΔS 0 were calculated, which showed the involvement of hydrogen bonds and van der Waals interactions for drug-ctDNA interaction. FTIR and molecular docking results suggested that ART, AA, and DHAA were bound to the A-T rich region in the minor groove of ctDNA.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi-110025 India +91 11 26983409 +91 8860634100
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | | | - Khaled Mohamed Khedher
- Department of Civil Engineering, College of Engineering, King Khalid University Abha 6421 Saudi Arabia
- Department of Civil Engineering, ISET, DGET Nabeul Tunisia
| | - Prashant Singh
- Department of Chemistry, ARSD College, University of Delhi New Delhi-110021 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi-110025 India +91 11 26983409 +91 8860634100
| |
Collapse
|
8
|
Saraswat J, Wani FA, Dar KI, Rizvi MMA, Patel R. Noncovalent Conjugates of Ionic Liquid with Antibacterial Peptide Melittin: An Efficient Combination against Bacterial Cells. ACS OMEGA 2020; 5:6376-6388. [PMID: 32258872 PMCID: PMC7114158 DOI: 10.1021/acsomega.9b03777] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Growing antibiotic resistance has become a major health problem and has encouraged many researchers to find an alternative class of antibiotics. Combination therapy (covalent/noncovalent) is supposed to increase antibacterial activity leading to a decrease in administration dosage, thus lowering the risk of adverse side effects. The covalent coupling sometimes leads to instability and loss in the structure of AMPs. Therefore, herein, we have reported innovative research involving the noncovalent coupling of melittin (MEL), an antimicrobial peptide with a series of synthesized less toxic pyrrolidinium-based ionic liquids (ILs) for which MTT assay was performed. The antibacterial results of conjugates showed remarkable improvement in the MIC value as compared to MEL and ILs alone against Escherichia coli and Staphylococcus aureus . In addition, hemocompatibility results suggested good selectivity of the noncovalent conjugate as a potential antibiotic agent. Further, the docking study was employed to acquire the most favorable conformation of MEL in the presence of ILs. The best possible complex was further studied using various spectroscopic techniques, which showed appreciable binding and stability of the complex.
Collapse
Affiliation(s)
- Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farooq Ahmed Wani
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
9
|
DNA-BINDING and DNA-protecting activities of small natural organic molecules and food extracts. Chem Biol Interact 2020; 323:109030. [PMID: 32205154 DOI: 10.1016/j.cbi.2020.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
The review summarizes literature data on the DNA-binding, DNA-protecting and DNA-damaging activities of a range of natural human endogenous and exogenous compounds. Small natural organic molecules bind DNA in a site-specific mode, by arranging tight touch with the structure of the major and minor grooves, as well as individual bases in the local duplex DNA. Polyphenols are the best-studied exogenous compounds from this point of view. Many of them demonstrate hormetic effects, producing both beneficial and damaging effects. An attempt to establish the dependence of DNA damage or DNA protection on the concentration of the compound turned out to be successful for some polyphenols, daidzein, genistein and resveratrol, which were DNA protecting in low concentrations and DNA damaging in high concentrations. There was no evident dependence on concentration for quercetin and kaempferol. Probably, the DNA-protecting effect is associated with the affinity to DNA. Caffeine and theophylline are DNA binders; at the same time, they favor DNA repair. Although most alkaloids damage DNA, berberine can protect DNA against damage. Among the endogenous compounds, hormones belonging to the amine class, thyroid and steroid hormones appear to bind DNA and produce some DNA damage. Thus, natural compounds continue to reveal beneficial or adverse effects on genome integrity and provide a promising source of therapeutic activities.
Collapse
|
10
|
Maurya N, Alzahrani KA, Patel R. Probing the Intercalation of Noscapine from Sodium Dodecyl Sulfate Micelles to Calf Thymus Deoxyribose Nucleic Acid: A Mechanistic Approach. ACS OMEGA 2019; 4:15829-15841. [PMID: 31592453 PMCID: PMC6777008 DOI: 10.1021/acsomega.9b01543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 06/07/2023]
Abstract
Noscapine (NOS) is efficient in inhibiting cellular proliferation and induces apoptosis in nonsmall cell, lung, breast, lymphatic, and prostate cancers. The micelle-assisted drug delivery is a well-known phenomenon; however, the proper mechanism is still unclear. Therefore, in the present study, we have shown a mechanistic approach for the delivery of NOS from sodium dodecyl sulfate (SDS) micelles to calf thymus deoxyribose nucleic acid (ctDNA) base-pairs using various spectroscopic techniques. The absorption and emission spectroscopy results revealed that NOS interacts with the SDS micelle and resides in its hydrophobic core. Further, the intercalation of NOS from SDS micelles to ctDNA was also shown by these techniques. The anisotropy and quenching results further confirmed the relocation of NOS from SDS micelles to ctDNA. The CD analysis suggested that SDS micelles do not perturb the structure of ctDNA, which supported that SDS micelles can be used as a safe delivery vehicle for NOS. This work may be helpful for the invention of advanced micelle-based vehicles for the delivery of an anticancer drug to their specific target site.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
11
|
Physico-chemical study of new ruthenium(III), Pd(II) and Co(II) complexes, DNA binding of Pd(II) complex and biological applications. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Das S, da Silva CJ, Silva MDM, Dantas MDDA, de Fátima Â, Góis Ruiz ALT, da Silva CM, de Carvalho JE, Santos JCC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, Brahmachari G, Modolo LV. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. J Adv Res 2017; 9:51-61. [PMID: 30046486 PMCID: PMC6057241 DOI: 10.1016/j.jare.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (•O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to •O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb) and GI50 for several human cancer cell was observed.
Collapse
Affiliation(s)
- Suvankar Das
- Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Cristiane J da Silva
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina de M Silva
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Lúcia T Góis Ruiz
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Cleiton M da Silva
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ernesto de Carvalho
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Josué C C Santos
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Isis M Figueiredo
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Edeildo F da Silva-Júnior
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Thiago M de Aquino
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - João X de Araújo-Júnior
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Goutam Brahmachari
- Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | | |
Collapse
|
14
|
Husain MA, Ishqi HM, Sarwar T, Rehman SU, Tabish M. Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modelling approach. MEDCHEMCOMM 2017; 8:1283-1296. [PMID: 30108839 PMCID: PMC6072532 DOI: 10.1039/c7md00094d] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
Indomethacin belongs to the acetic acid derivative class of non-steroidal anti-inflammatory drugs with diverse pharmacological and biological activities. Understanding the mechanism of interaction of drugs with possible target and off-target biomolecules can prove useful in the development of a rational drug designing system. In this paper, we have attempted to ascertain the mode of binding of indomethacin with calf thymus DNA (Ct-DNA) through various biophysical techniques and in silico molecular docking. Analysis of the UV-visible absorbance spectra and fluorescence emission profile of indomethacin upon addition of Ct-DNA indicates the formation of a drug-DNA complex. UV-visible absorbance and steady state fluorescence experiments revealed a binding constant on the order of 103 L mol-1, which is consistent with those of well-known groove binders. Competitive displacement studies with ethidium bromide, acridine orange and Hoechst 33258 further suggested that indomethacin binds to the minor groove of the Ct-DNA. The above observations were further confirmed by KI induced quenching experiments, DNA melting studies, CD spectral analysis and viscosity measurements. The thermodynamic parameters like spontaneous free energy (ΔG < 0) and large favourable enthalpy (ΔH < 0) obtained from isothermal calorimetry indicated the involvement of hydrogen bonding and van der Waals forces in the binding process. Molecular docking further corroborated the experimental results.
Collapse
Affiliation(s)
- Mohammed Amir Husain
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Hassan Mubarak Ishqi
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Tarique Sarwar
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Sayeed Ur Rehman
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| | - Mohammad Tabish
- Department of Biochemistry , Faculty of Life Sciences , A.M. University , Aligarh , U.P. 202002 , India . ; Tel: +91 9634780818
| |
Collapse
|
15
|
Jalali F, Dorraji PS. Interaction of anthelmintic drug (thiabendazole) with DNA: Spectroscopic and molecular modeling studies. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2014.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. Int J Biol Macromol 2017; 96:223-233. [DOI: 10.1016/j.ijbiomac.2016.12.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|
17
|
Husain MA, Ishqi HM, Rehman SU, Sarwar T, Afrin S, Rahman Y, Tabish M. Elucidating the interaction of sulindac with calf thymus DNA: biophysical and in silico molecular modelling approach. NEW J CHEM 2017. [DOI: 10.1039/c7nj03698a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sulindac is one of the most effective NSAIDs and belongs to the arylalkanoic acid class.
Collapse
Affiliation(s)
| | | | - Sayeed Ur Rehman
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Tarique Sarwar
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Shumaila Afrin
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Yusra Rahman
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| | - Mohammad Tabish
- Department of Biochemistry
- Faculty of Life Sciences
- A.M. University
- Aligarh
- India
| |
Collapse
|
18
|
Ataci N, Arsu N. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:128-133. [PMID: 27367618 DOI: 10.1016/j.saa.2016.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6×10(5)M(-1)from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7°C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.
Collapse
Affiliation(s)
- Nese Ataci
- Yildiz Technical University, Chemistry Department, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Chemistry Department, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey.
| |
Collapse
|
19
|
Temerk Y, Ibrahim M, Ibrahim H, Kotb M. Interactions of an anticancer drug lomustine with single and double stranded DNA at physiological conditions analyzed by electrochemical and spectroscopic methods. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Evans KO, Compton DL, Whitman NA, Laszlo JA, Appell M, Vermillion KE, Kim S. Octadecyl ferulate behavior in 1,2-Dioleoylphosphocholine liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:333-343. [PMID: 26332862 DOI: 10.1016/j.saa.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/17/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Octadecyl ferulate was prepared using solid acid catalyst, monitored using Supercritical Fluid Chromatography and purified to a 42% yield. Differential scanning calorimetry measurements determined octadecyl ferulate to have melting/solidification phase transitions at 67 and 39°C, respectively. AFM imaging shows that 5-mol% present in a lipid bilayer induced domains to form. Phase behavior measurements confirmed that octadecyl ferulate increased transition temperature of phospholipids. Fluorescence measurements demonstrated that octadecyl ferulate stabilized liposomes against leakage, maintained antioxidant capacity within liposomes, and oriented such that the feruloyl moiety remained in the hydrophilic region of the bilayer. Molecular modeling calculation indicated that antioxidant activity was mostly influenced by interactions within the bilayer.
Collapse
Affiliation(s)
- Kervin O Evans
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA.
| | - David L Compton
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Nathan A Whitman
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Joseph A Laszlo
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Michael Appell
- Bacterial Foodborne Pathogens and Mycology, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Karl E Vermillion
- Functional Foods Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Sanghoon Kim
- Plant Polymer Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
21
|
Ghosh S, Kundu P, Chattopadhyay N. DNA induced sequestration of a bioactive cationic fluorophore from the lipid environment: A spectroscopic investigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 154:118-25. [DOI: 10.1016/j.jphotobiol.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/28/2022]
|
22
|
Firdhouse MJ, Lalitha P. Binding Properties of Biosynthesized Gold Nanoparticles with Calf-Thymus DNA in vitro. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijbc.2015.188.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Anantharaman A, Priya RR, Hemachandran H, Sivaramakrishna A, Babu S, Siva R. Studies on interaction of norbixin with DNA: multispectroscopic and in silico analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:163-169. [PMID: 25754392 DOI: 10.1016/j.saa.2015.02.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
The interaction of food colorant norbixin with calf thymus DNA (CTDNA) was investigated through UV-Visible spectroscopy, Fourier Transform Infrared (FTIR), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR), DNA melting studies, electrophoretic analysis, histological staining technique and molecular docking studies. The results indicated that norbixin interacted with CTDNA by partial intercalation mode. The binding constant (K) of norbixin with CTDNA was calculated to be 5.08×10(5) Mol(-1) L. FTIR and CD studies were coupled with (1)H NMR spectra revealed that norbixin intercalates partially and binds to the groove's, phosphate group, deoxyribose sugar of DNA and also induces conformational transition of B-form to A-form DNA. Agarose gel electrophoretic and histological staining technique results further prove that, norbixin specifically binds to the DNA in the cell. Moreover, molecular docking studies on the specific binding of norbixin with CTDNA have exhibited lowest conformation energy score of -3.2. Therefore, this food colorant has the ability to interact with DNA and it could emerge as a promising class of natural DNA targeted therapeutic.
Collapse
Affiliation(s)
- Amrita Anantharaman
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rajendra Rao Priya
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hridya Hemachandran
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - Subramanian Babu
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Ramamoorthy Siva
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
24
|
Xie J, Chen D, Wu Q, Wang J, Qiao H. Spectroscopic analyses on interaction of melamine, cyanuric acid and uric acid with DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:714-721. [PMID: 25988817 DOI: 10.1016/j.saa.2015.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
In this work, the interaction of DNA with melamine (MEL), cyanuric acid (CYA) and uric acid (UA) were studied, respectively, by means of UV-vis, fluorescence, circular dichroism (CD) spectroscopy, viscosity and gel electrophoresis methods. The fluorescence quenching was used to study the interaction models of MEL, CYA and UA with DNA, respectively, and the bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD) and binding site number (n) were calculated by adopting Stern-Volmer, Lineweaver-Burk and Double logarithm equations. The results show that MEL, CYA and UA are all able to markedly bind to DNA, and the binding strength order is DNA-UA>DNA-CYA>DNA-MEL. It is wished that these researches would facilitate the understanding of the formation of kidney stones and gout in the body after ingesting excess MEL.
Collapse
Affiliation(s)
- Jinhui Xie
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Dandan Chen
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Qiong Wu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Heng Qiao
- College of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
25
|
Fotouhi L, Tabatabaee R. A study of the interaction tyrosine and DNA using voltammetry and spectroscopy methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:152-156. [PMID: 24239711 DOI: 10.1016/j.saa.2013.10.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
The interaction of tyrosine (Tyr) with double stranded DNA was studied by cyclic voltammetry, fluorescence emission spectroscopy, and UV-vis spectroscopy. The presence of DNA on a single-walled carbon nanotubes (DNA/SWCNT/GCE) and multi-walled carbon nanotubes (DNA/MWCNT/GCE) modified glassy carbon electrode showed a decrease in the current and a positive shift in the Tyr oxidation peak, indicating the intercalative interaction. The transfer coefficient (α), heterogeneous rate constant (k(s)), and surface concentration (Γ) were calculated in the absence and presence of DNA. The corresponding binding constant of Tyr with DNA and Hill coefficient were obtained from cooperative Hill model. The UV spectroscopic data confirmed the interaction between Tyr and DNA is intercalative with the binding constant of 3.98×10(3) mol(-1) L. Furthermore, the mechanism of fluorescence quenching has been discussed and the binding constant and numbers of binding sites were obtained as 3.37×10(3) mol(-1) L and 2, respectively from the Stern-Volmer plot.
Collapse
Affiliation(s)
- Lida Fotouhi
- Department of Chemistry, School of Science, Alzahra University, P.O. Box 1993891176, Tehran, Iran.
| | - Raziyeh Tabatabaee
- Department of Chemistry, School of Science, Alzahra University, P.O. Box 1993891176, Tehran, Iran
| |
Collapse
|