1
|
Zhou J, Guo J, Mebel AM, Ghimire G, Liang F, Chang S, He J. Probing the Intermediates of Catalyzed Dehydration Reactions of Primary Amide to Nitrile in Plasmonic Junctions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghao Zhou
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jing Guo
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander Moiseevich Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Alam MS, Lee DU. Molecular structure, spectral (FT-IR, FT-Raman, Uv-Vis, and fluorescent) properties and quantum chemical analyses of azomethine derivative of 4-aminoantipyrine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Vidhya V, Austine A, Arivazhagan M. Quantum chemical determination of molecular geometries and spectral investigation of 4-ethoxy-2, 3-difluoro benzamide. Heliyon 2019; 5:e02365. [PMID: 31844688 PMCID: PMC6895590 DOI: 10.1016/j.heliyon.2019.e02365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 11/27/2022] Open
Abstract
The present work reports the application of density functional theory (DFT) at B3LYP with various basis sets which provide the relationship between the structural and spectral properties of 4-ethoxy-2, 3-difluoro benzamide (4EDFB). A Complete vibrational analysis has been performed at the density functional theory (DFT) method with various basis sets in the ground state. The results of vibrational wave numbers are in good agreement with the experimental spectra (Infrared and Raman). Energy gap of the molecule is evaluated using frontier molecular orbital energies (HOMO-LUMO). The frontier energy gap value reveals the chemical reactivity and intermolecular charge transfer occur within the molecule. Global chemical descriptors provide the local and global softness and local reactivity parameters used to identify the nucleophilic and electrophilic behavior of a specific site within the compound. The dimer structure is performed to evaluate the intermolecular hydrogen bond (O-H-O). The title molecule is capable of receiving second harmonic generation (SHG) is due to high value of hyperpolarizability indicates the NLO activity of the molecule. Apart from NLO entities, aromaticity and the molecular electrostatic potential surface (MEP) explain the hydrogen bonding and provide the reactive behavior of the molecule. The Mulliken population analysis leads to redistribution of electron density in the ring.
Collapse
Affiliation(s)
- V. Vidhya
- Department of Physics, Trichy Engineering College, Trichy, 621132, India
| | - A. Austine
- PG&Research Department of Physics, A.A.Government Arts College, Musiri, 621211, India
| | - M. Arivazhagan
- PG&Research Department of Physics, Government Arts College, Trichy, 620022, India
| |
Collapse
|
4
|
Sathish M, Meenakshi G, Xavier S, Sebastian S, Periandy S, Ahmad N, Jamalis J, Rosli M, Fun HK. Synthesis, molecular structure, Hirshfeld surface, spectral investigations and molecular docking study of 3-(5-bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) by DFT method. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Noori Tahneh A, Bagheri Novir S, Balali E. Density functional theory study of structural and electronic properties of trans and cis structures of thiothixene as a nano-drug. J Mol Model 2017; 23:356. [PMID: 29177682 DOI: 10.1007/s00894-017-3522-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.
Collapse
Affiliation(s)
- Akram Noori Tahneh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Bagheri Novir
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Ebrahim Balali
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Çakmak H, Güngörmedi G, Dikmen G, Çelik PA, Çabuk A. The true methodology for rhamnolipid: Various solvents affect rhamnolipid characteristics. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hakan Çakmak
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| | - Gökhan Güngörmedi
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| | - Gökhan Dikmen
- Central Research LaboratoryEskisehir Osmangazi UniversityEskisehirTurkey
| | - Pınar Aytar Çelik
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| | - Ahmet Çabuk
- Department of Biotechnology and BiosafetyGraduate School of Natural and Applied ScienceEskisehir Osmangazi UniversityEskisehirTurkey
- Department of BiologyFaculty of Arts and ScienceEskisehir Osmangazi UniversityEskisehirTurkey
| |
Collapse
|
7
|
Tao Y, Li X, Han L, Zhang W, Liu Z. Spectroscopy (FT-IR, FT-Raman), hydrogen bonding, electrostatic potential and HOMO-LUMO analysis of tioxolone based on DFT calculations. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Tao Y, Han L, Li X, Han Y, Liu Z. Molecular structure, spectroscopy (FT-IR, FT-Raman), thermodynamic parameters, molecular electrostatic potential and HOMO-LUMO analysis of 2, 6-dichlorobenzamide. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Equilibrium molecular structure of benzamide from gas-phase electron diffraction and theoretical calculations. Struct Chem 2015. [DOI: 10.1007/s11224-015-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Abraham RJ, Aboitiz N, Filippi M, Genesio E, Piaggio P, Sancassan F. Conformational analysis, part 43. A theoretical and LIS/NMR investigation of the conformations of substituted benzamides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:498-508. [PMID: 26017265 DOI: 10.1002/mrc.4243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
A refined Lanthanide-Induced-Shift Analysis (LISA) is used with molecular mechanics and ab initio calculations to investigate the conformations of benzamide (1), N-methylbenzamide (2), N,N-dimethylbenzamide (3) and the conformational equilibria of 2-fluoro (4), 2-chloro (5) and N-methyl-2-methoxy benzamide (6). The amino group in 1 is planar in the crystal but is calculated to be pyramidal with the CO/phenyl torsional angle (ω) of 20-25°. The LISA analysis gave acceptable agreement factors (Rcryst ≤ 1%) for the ab initio geometries when ω was decreased to 0°, the other geometries were not as good. In 2, the N-methyl is coplanar with the carbonyl group in all the geometries. Good agreement was obtained for the RHF geometries, with ω 25°, the other geometries were only acceptable with increased values of ω. In 3, good agreement for the RHF and PCModel geometries was found when ω was changed from the calculated values of 40° (RHF) and 90° (PCModel) to ca. 60°, the X-ray and B3LYP geometries were not as good. The two substituted compounds 4, 5 and 6 are interconverting between the cis (O,X) and trans (O,X) conformers. The more stable trans conformer is planar in 4 and 6 but the cis form non-planar. Both the cis and trans conformers of 5 are non-planar. There is an additional degree of freedom in 6 due to the 2-methoxy group, which can be either planar or orthogonal to the phenyl ring in both conformers. The conformer ratios were obtained from the LISA analysis to give Ecis-Etrans in 4 > 2.3 kcal/mol (CDCl3 ) and 1.7 kcal/mol (CD3 CN), in 5 0.0 kcal/mol (CD3 CN) and in 6 > 2.5 kcal/mol (CDCl3 ) and 2.0 kcal/mol (CD3 CN). These values were used with the observed versus calculated (1) H shifts to determine the conformer ratios and energies in DMSO solvent to give Ecis-Etrans 1.1, -0.1 and 1.8 kcal/mol for (4), (5) and (6). Comparison of the observed versus calculated conformer energies show that both the MM and ab initio calculations overestimate the NH..F hydrogen bond in (4) by ca. 2 kcal/mol.
Collapse
Affiliation(s)
- Raymond J Abraham
- The Chemistry Department, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
| | - Nuria Aboitiz
- The Chemistry Department, University of Liverpool, Crown St., Liverpool, L69 7ZD, UK
| | - Marco Filippi
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Genova, I-16146, Italy
| | - Eva Genesio
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Genova, I-16146, Italy
| | - Paola Piaggio
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Genova, I-16146, Italy
| | - Fernando Sancassan
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Genova, I-16146, Italy
| |
Collapse
|
11
|
Subhapriya G, Kalyanaraman S, Surumbarkuzhali N, Vijayalakshmi S, Krishnakumar V. Investigation of intermolecular hydrogen bonding in 2,3,4,5,6 pentafluorobenzoic acid through molecular structure and vibrational analysis – A DFT approach. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|