1
|
Sharma K, Sonu, Sudhaik A, Ahamad T, Kaya S, Nguyen LH, Maslov MM, Le QV, Nguyen VH, Singh P, Raizada P. Unraveling the synergism mechanistic insight of O-vacancy and interfacial charge transfer in WO 3-x decorated on Ag 2CO 3/BiOBr for photocatalysis of water pollutants: Based on experimental and density functional theory (DFT) studies. ENVIRONMENTAL RESEARCH 2024; 260:119610. [PMID: 39004393 DOI: 10.1016/j.envres.2024.119610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Photocatalysis has been widely used as one of the most promising approaches to remove various pollutants in liquid or gas phases during the last decade. The main emphasis of the study is on the synergy of vacancy engineering and heterojunction formation, two widely used modifying approaches, to significantly alter photocatalytic performance. The vacancy-induced Ag2CO3/BiOBr/WO3-x heterojunction system has been fabricated using a co-precipitation technique to efficiently abate methylene blue (MB) dye and doxycycline (DC) antibiotic. The as-fabricated Ag2CO3/BiOBr/WO3-x heterojunction system displayed improved optoelectronic characteristic features because of the rational combination of dual charge transferal route and defect modulation. The Ag2CO3/BiOBr/WO3-x system possessed 97% and 74% photodegradation efficacy for MB and DC, respectively, with better charge isolation and migration efficacy. The ternary photocatalyst possessed a multi-fold increase in the reaction rate for both MB and DC, i.e., 0.021 and 0.0078 min-1, respectively, compared to pristine counterparts. Additionally, more insightful deductions about the photodegradation routes were made possible by the structural investigations of MB and DC using density functional theory (DFT) simulations. This study advances the understanding of the mechanisms forming visible light active dual Z-scheme heterojunction for effective environmental remediation.
Collapse
Affiliation(s)
- Kusum Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| | - Sonu
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Mikhail M Maslov
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University "MEPhl", Kashirskoe Shosse 31, Moscow, 115409, Russia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229.
| |
Collapse
|
2
|
Naggar AH, Seaf-Elnasr TA, Thabet M, El-Monaem EMA, Chong KF, Bakr ZH, Alsohaimi IH, Ali HM, El-Nasser KS, Gomaa H. A hybrid mesoporous composite of SnO 2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108247-108262. [PMID: 37747604 DOI: 10.1007/s11356-023-29649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.
Collapse
Affiliation(s)
- Ahmed H Naggar
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
| | - Tarek A Seaf-Elnasr
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia.
| | - Mahmoud Thabet
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Kwok F Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Gambang, Malaysia
| | - Zinab H Bakr
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
| | - Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Forensic Chemistry Department, Forensic Medicine Authority, Cairo, Egypt
| | - Karam S El-Nasser
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
3
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
4
|
Sheikhsamany R, Faghihian H, Shirani M. The MIL100(Fe)/BaTi 0.85Zr 0.15O 3 nanocomposite with the photocatalytic capability for study of tetracycline photodegradation kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122323. [PMID: 36621027 DOI: 10.1016/j.saa.2023.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The visible light-active nanocomposite with the photocatalytic capability was facile one-pot solvothermal method successfully synthesized. X-ray diffraction (XRD), Thermogravimetry and Derivative Thermogravimetry (TG-DTG), Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM-EDX), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Fourier Transform Infra-Red (FT-IR) analysis were employed to characterize the synthetized BaTi0.85Zr0.15O3, MIL-100(Fe), and the MIL-100(Fe)/BaTi0.85Zr0.15O3 samples. As a result of the Scherrer equations, the size of grains for MIL-100(Fe), BaTi0.85Zr0.15O3, and MIL-100(Fe)/BaTi0.85Zr0.15O3 was estimated to be 40.81, 12.00, and 22.70 nm, respectively. MIL-100(Fe), BaTi0.85Zr0.15O3, and MIL-100(Fe)/BaTi0.85Zr0.15O3 samples showed bandgap values of 1.77, 3.02, and 2.56 determined from their absorption edge wavelengths. In the photodegraded solutions, chemical oxygen demand (COD) data and tetracycline (TC) absorbencies were used to obtain the rate constants of 0.032 min-1 and 0.030 min-1, respectively. This corresponds to t1/2-values of 27.7 min and 21.7 min, respectively, for the degradation and mineralization of TC molecules during photodegradation process.
Collapse
Affiliation(s)
- Raana Sheikhsamany
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Hossein Faghihian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| |
Collapse
|
5
|
Photo–Redox Properties of –SO3H Functionalized Metal-Free g-C3N4 and Its Application in the Photooxidation of Sunset Yellow FCF and Photoreduction of Cr (VI). Catalysts 2022. [DOI: 10.3390/catal12070751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this work, we synthesized a metal-free sulfonic functionalized graphitic carbon nitride using sulfuric acid through the wet impregnation technique. The functionalization of sulfonic groups (–SO3H) on g-C3N4 will promote a high surface charge density and charge separation owing to its high electronegativity. The g-C3N4–SO3H shows excellent optical/electronic and surface properties towards enhanced photo–redox reactions. The sulfonic groups also facilitate the availability of more separated charge carriers for photocatalytic oxidation and reduction reactions. The as-synthesized material has been characterized by different spectroscopic tools to confirm the presence of functionalized –SO3H groups and optoelectronic possessions. The photocatalytic responses of g-C3N4–SO3H result in 99.56% photoreduction of Cr (VI) and 99.61% photooxidation of Sunset Yellow FCF within 16 min and 20 min, respectively, of visible light irradiation. The g-C3N4–SO3H catalyst exhibits a high apparent rate constant (Kapp) towards the degradation of Cr (VI), and SSY, i.e., 0.783 min−1 and 0.706 min−1, respectively. The intense optical–electrochemical properties and potentially involved active species have been analyzed through transient photocurrent, electrochemical impedance, and scavenging studies. Consequently, the photocatalytic performances are studied under different reaction parameters, and the plausible photocatalytic mechanism is discussed based on the results.
Collapse
|
6
|
Dhatshanamurthi P, Subash B, Jayamoorthy K, Sasikala R, Vijaya P, Shanthi M. An efficient nanostructured zirconium modified TiO 2 for detoxification of azo dye. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P. Dhatshanamurthi
- Photocatalysis Laboratory, Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Chemistry, Sun Arts and Science College, Tiruvanamalai, Tamil Nadu, India
| | - B. Subash
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - K. Jayamoorthy
- Department of Chemistry, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
| | - R. Sasikala
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - P. Vijaya
- Department of Chemistry, Rani Anna Government college for women, Tirunelveli, Tamil Nadu, India
| | - M. Shanthi
- Photocatalysis Laboratory, Department of Chemistry, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
7
|
Alsheheri SZ, Shawky A, Alsaggaf WT, Zaki ZI. Visible-light responsive ZnSe-anchored mesoporous TiO 2heterostructures for boosted photocatalytic reduction of Cr(VI). NANOTECHNOLOGY 2022; 33:305701. [PMID: 35439748 DOI: 10.1088/1361-6528/ac6816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of Cr(VI) ions in water can cause serious influences on the environment and human health. This work reports a humble synthesis of ZnSe nanoparticles anchored to the sol-gel prepared TiO2for visible-light-driven photocatalytic reduction of Cr(VI) ions. The 7.9 nm ZnSe nanoparticles were attached to TiO2surfaces at a content of 1.0-4.0 wt% as experiential by TEM investigation. The designed nanocomposite unveiled mesostructured surfaces exhibiting surface areas of 176-210 m2g-1. The impregnation of ZnSe amended the visible-light absorption of TiO2due to the bandgap decrease from 3.14 to 2.90 eV. The photocatalytic reduction of Cr(VI) applying the optimized portion of 3.0 wt% ZnSe/TiO2was achieved at 177μmol min-1. This photocatalytic activity is higher than the common Degussa P25 and pristine TiO2by 20 and 30 times, respectively. The improved performance is signified by the efficient interfacial separation of charge carriers by the introduction of ZnSe. This innovative ZnSe/TiO2has also shown photocatalytic stability for five consecutive runs.
Collapse
Affiliation(s)
- Soad Z Alsheheri
- Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80200, Jeddah 21589, Saudi Arabia
| | - Ahmed Shawky
- Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical R&D Institute (CMRDI) PO Box 87 Helwan 11421, Cairo, Egypt
| | - Wejdan T Alsaggaf
- Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80200, Jeddah 21589, Saudi Arabia
| | - Z I Zaki
- Department of Chemistry, College of Science, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Shawky A, Alsheheri SZ, Alsaggaf WT, Al-Hajji L, Zaki Z. Promoted hexavalent chromium ion photoreduction over visible-light active RuO2/TiO2 heterojunctions prepared by solution process. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Yadav SN, Kumar B, Yadav RK, Singh P, Gupta SK, Singh S, Singh C, Chaubey S, Singh AP. Synthesis of highly efficient selenium oxide hybridized g-C3N4 photocatalyst for NADH/NADPH regeneration to facilitate solar-to-chemical reaction. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An inexpensive graphitic carbon nitrite (g-C3N4) photocatalyst was hybridized with selenium oxide (SeO2) photocatalyst by a monolayer-dispersed technique. After hybridization of g-C3N4 with SeO2, the NADH/NADPH regeneration efficiency of SeO2 photocatalyst was enhanced under solar light illumination was observed. The photocatalytic activity of SeO2/g-C3N4 photocatalyst under solar light illumination was enhanced by 3-fold higher than g-C3N4 photocatalyst, the solar light photocatalytic activity was produced and the photo-decomposition of SeO2 photocatalyst was completely stifled after hybridized SeO2 photocatalyst by g-C3N4 photocatalyst. The improvement in performance and photo-decomposition inhibition under solar light illumination was persuaded by efficiency separation of photo-persuaded holes from SeO2 to the valence bond (V.B.)/highest occupied molecular orbital (HOMO) of g-C3N4 under solar light illumination, the electron jumped from the V.B. to the conduction band (C.B.)/lowest unoccupied molecular orbital (LUMO) of g-C3N4 could directly insert into the C.B. of SeO2 photocatalyst, synthesized SeO2/g-C3N4 photocatalyst is highly active for NADH/NADPH regeneration under solar light.
Collapse
Affiliation(s)
- Shesh Nath Yadav
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Brijesh Kumar
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Sarvesh Kumar Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur U.P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Chandani Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Surabhi Chaubey
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
10
|
Advances in the Application of Nanocatalysts in Photocatalytic Processes for the Treatment of Food Dyes: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132111676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of food additives (such as dyes, which improve the appearance of the products) has become more prominent, due to the rapid population growth and the increase in demand for beverages and processed foods. The dyes are usually found in effluents that are discharged into the environment without previous treatment; this promotes mass contamination and alters the aquatic environment. In recent years, advanced oxidation processes (AOPs) have proven to be effective technologies used for wastewater treatment through the destruction of the total organic content of toxic contaminants, including food dyes. Studies have shown that the introduction of catalysts in AOPs improve treatment efficiency (i.e., complete decomposition without secondary contamination). The present review offers a quick reference for researchers, regarding the treatment of wastewater containing food dyes and the different types of AOPs, with different catalyst and nanocatalyst materials obtained from traditional and green chemical syntheses.
Collapse
|
11
|
Flores-Rojas E, Samaniego-Benítez JE, Serrato R, García-García A, Ramírez-Bon R, Ramírez-Aparicio J. Transformation of Nanostructures Cu 2O to Cu 3Se 2 through Different Routes and the Effect on Photocatalytic Properties. ACS OMEGA 2020; 5:20335-20342. [PMID: 32832786 PMCID: PMC7439400 DOI: 10.1021/acsomega.0c02299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/17/2020] [Indexed: 05/03/2023]
Abstract
In this work, copper selenide (Cu3Se2 umangite phase) was synthesized by two routes, using a chemical reaction and the hydrothermal method to obtain CuSe-A and CuSe-H, respectively. The synthesis of Cu3Se2 consisted of a three-step process: in the first step, copper(I) oxide hexapods (Cu2O) were obtained as the copper reservoir; in the second step, selenium ions were obtained from the reduction of selenium powder; and in the third step involves mixing two precursors following the two synthesis routes mentioned before. Analysis of X-ray diffraction and X-ray photoelectron spectroscopy showed the formation of the Cu3Se2 phase by both synthesis routes. On the other hand, using the scanning electron microscopy (SEM) technique, it is observed that the Cu3Se2 sample (CuSe-A) is obtained by exchanging in solution with agitation and that the copper selenium phase grows only on the surface of the hexapods. Meanwhile, the hydrothermal route promotes a total conversion of copper(I) oxide hexapods to the copper selenide phase (CuSe-H). The resulting materials were tested as photocatalytic materials to remove methylene blue dye in water under sunlight irradiation. Cu3Se2 (CuSe-H) obtained by the hydrothermal route exhibited a higher efficiency of photodegradation of dye, reaching a removal percentage of 92% after 4 h under sunlight.
Collapse
Affiliation(s)
- Ernesto Flores-Rojas
- Universidad del
Valle de México, Campus San Rafael, Sadi Carnot No. 57, San Rafael,
Cuauhtémoc, 06470 Ciudad de
México, México
| | - J. Enrique Samaniego-Benítez
- Cátedras
CONACyT- Instituto Politécnico Nacional − Centro de
Investigación en Ciencia Aplicada y Tecnología Avanzada
Unidad Legaria, legaria
694, Col. Irrigación, Del. Miguel Hidalgo, 11500 Ciudad de México, México
| | - Ricardo Serrato
- Universidad Tecnológica de Querétaro, Av. Pie de la Cuesta 2501, Nacional, 76148 Santiago de Querétaro, Querétaro, México
| | - Alejandra García-García
- Centro de Investigación en Materiales Avanzados Unidad Monterrey, Laboratorio de Síntesis y Modificación
de Nanoestructuras y Materiales Bidimensionales, Alianza Norte 202, Parque de Investigación
e Innovación Tecnológica, 66600 Apodaca, Nuevo León, México
| | - Rafael Ramírez-Bon
- Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional − Unidad
Querétaro, Libramiento
Norponiente #2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Jeannete Ramírez-Aparicio
- Cátedras
CONACyT-Instituto Nacional de Electricidad y Energías Limpias, Reforma 113, Colonia Palmira, 62490 Cuernavaca, Morelos, México
- . Phone: +52 (777) 3623811
| |
Collapse
|
12
|
ZnO Surface Doping to Enhance the Photocatalytic Activity of Lithium Titanate/TiO2 for Methylene Blue Photodegradation under Visible Light Irradiation. SURFACES 2020. [DOI: 10.3390/surfaces3030022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wastewater contaminated with dyes produced by textile industries is a major problem due to inadequate treatment prior to release into the environment. In this paper, the ability of ZnO to enhance the interfacial photocatalytic activity of lithium titanate/TiO2 (LTO/TiO2) for the photodegradation of methylene blue (MB) under visible light irradiation (4.38 mW/cm2) was assessed. The ZnO-doped lithium titanate/TiO2 (ZnO/LTO/TiO2) was synthesized using a combination of hydrothermal and wetness impregnation methods. The high-resolution transmission electron microscope (HRTEM) and X-ray Diffraction (XRD) analyses indicate that the ZnO/LTO/TiO2 contain several phases (ZnO, LTO, and TiO2). The adsorption capacity of LTO/TiO2 (70%) was determined to be higher compared to its photocatalytic activity (25%), which is attributed to the strong interaction between the Li and surface oxygen atoms with the MB dye molecules. The introduction of ZnO improved the photocatalytic ability of LTO/TiO2 by 45% and extended the life span of ZnO/LTO/TiO2. The ZnO/LTO/TiO2 can be reused without a significant loss up to four cycles, whereas LTO/TiO2 had reduced adsorption after the second cycle by 30%. The ZnO increased the surface defects and restrained the photo-induced electrons (e−) from recombining with the photo-induced holes (h+). Scavenging tests indicated that the hydroxyl radicals played a major role in the photodegradation of MB, which is followed by electrons and holes.
Collapse
|
13
|
Fabrication of Novel ZnSeO3 Anchored on g-C3N4 Nanosheets: An Outstanding Photocatalyst for the Mitigation of Pesticides and Pharmaceuticals. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01615-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Ameri A, Shakibaie M, Pournamdari M, Ameri A, Foroutanfar A, Doostmohammadi M, Forootanfar H. Degradation of diclofenac sodium using UV/biogenic selenium nanoparticles/H2O2: Optimization of process parameters. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112382] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Dastkhoon M, Ghaedi M, Asfaram A, Alipanahpour Dil E. Comparative study of ability of sonochemistry combined ZnS:Ni nanoparticles-loaded activated carbon in reductive of organic pollutants from environmental water samples. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Dhenadhayalan N, Lin KC. Photochemically Synthesized Ruthenium Nanoparticle-Decorated Carbon-Dot Nanochains: An Efficient Catalyst for Synergistic Redox Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13759-13769. [PMID: 32124604 DOI: 10.1021/acsami.9b20477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ruthenium nanoparticle (NP)-decorated carbon dots (Ru/C-dots) were fabricated as a potential catalyst in the application of both oxidation and reduction. The photochemical method was used to synthesize Ru/C-dot nanohybrids. The as-prepared Ru/C-dots exhibited a core-shell-based nanochain structure, in which the spherical nature of C-dots further evolved to a layer structure to homogeneously encapsulate Ru NPs. Such Ru/C-dots have excellent catalytic properties, which were demonstrated in the oxidation of flavonoids and concomitantly reduction of inorganic complex and organic dyes, each yielding a high catalytic rate constant. We also proposed an appropriate catalytic mechanism for each reaction. Higher catalytic activity was achieved by the synergistic effect of the encapsulated Ru NPs and the C-dots layer. Further, this nanohybrid was successfully applied to inspect a real aqueous sample. We anticipated that Ru/C-dots nanohybrid may open up a broad platform for the design of efficient multifunctional catalysts.
Collapse
Affiliation(s)
- Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Coros M, Socaci C, Pruneanu S, Pogacean F, Rosu MC, Turza A, Magerusan L. Thermally reduced graphene oxide as green and easily available adsorbent for Sunset yellow decontamination. ENVIRONMENTAL RESEARCH 2020; 182:109047. [PMID: 31865167 DOI: 10.1016/j.envres.2019.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The release of synthetic food dyes, like Sunset yellow, into industrial effluents can cause serious environmental and health problems. Due to its aromatic structure, it is recalcitrant towards degradation into non-toxic intermediates and its removal by efficient adsorption represents a cheap and efficient method. Herein we propose the use of thermally reduced graphene oxide (TRGO) as effective Sunset yellow dye adsorbent with an adsorption maximum capacity comparable with other sophisticated, chemically synthesized carbon-based nanomaterials. The reduced graphene oxide and the Sunset yellow adsorbed one were characterized by FT-IR, XPS and XRD spectroscopy, N2 adsorption-desorption isotherm and TGA analysis. BET surface area reduced from 274.1 m2/g (for TRGO) to 39.9 m2/g (for TRGO-SY) showing that Sunset Yellow molecules occupied the corresponding active sites while the number of sheets resulted from the XRD spectra - from 3 to 8 in TRGO to 5 in TRGO-SY indicates the ordered intercalations in the graphene structure. The adsorption isotherm experimental data were better fitted with the Langmuir model than the Freundlich model, with the maximum adsorption capacity of the SY dye monolayer of 243.3 mg/g at pH = 6.0 and 189.0 mg/g from synthetic wastewater. The kinetic study revealed a perfect fit following the Pseudo-second order model with an equilibrium achieved within 30 min. The lack of adsorption on the starting graphene oxide is indicative for π-π interactions between the adsorbate and adsorbent.
Collapse
Affiliation(s)
- Maria Coros
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania
| | - Crina Socaci
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania.
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania
| | - Florina Pogacean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania
| | - Marcela-Corina Rosu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania
| | - Lidia Magerusan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Abdel-Khalek AA, Mahmoud S, Zaki A. Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Spinel cobalt manganese oxide nano-composites grown hydrothermally on nanosheets for enhanced photocatalytic mineralization of Acid Black 1 textile dye: XRD, FTIR, FESEM, EDS and TOC studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1104-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Dastkhoon M, Ghaedi M, Asfaram A, Goudarzi A, Mohammadi SM, Wang S. Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies. ULTRASONICS SONOCHEMISTRY 2017; 37:94-105. [PMID: 28427687 DOI: 10.1016/j.ultsonch.2016.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 06/07/2023]
Abstract
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5min, 0.02g, 9, 12 and 12mgL-1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5mgg-1 for SY, 74.6mgg-1 for MG and 72.9mgg-1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber-Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model.
Collapse
Affiliation(s)
- Mehdi Dastkhoon
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering, Golestan University, Gorgan 49188-88369, Iran
| | | | - Shaobin Wang
- Department of Chemical Engineering, Curtin University, G.P.O. Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
21
|
Synthesis and characterization of zinc oxide prepared with ammonium hydroxide and photocatalytic application of organic dye under ultraviolet illumination. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1959-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Xia C, Jiang Q, Zhao C, Hedhili MN, Alshareef HN. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:77-85. [PMID: 26540620 DOI: 10.1002/adma.201503906] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/30/2015] [Indexed: 05/03/2023]
Abstract
Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max-imum current density of 97.5 mA cm(-2) at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec(-1) are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.
Collapse
Affiliation(s)
- Chuan Xia
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiu Jiang
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chao Zhao
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed N Hedhili
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Zheng D, Xin Y, Ma D, Wang X, Wu J, Gao M. Preparation of graphene/TiO2 nanotube array photoelectrodes and their photocatalytic activity for the degradation of alachlor. Catal Sci Technol 2016. [DOI: 10.1039/c5cy00887e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic mechanism scheme of the degradation of alachlor by the GR/TNA photoelectrodes.
Collapse
Affiliation(s)
- Dong Zheng
- Key Lab of Marine Environmental Science and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Yanjun Xin
- Key Lab of Marine Environmental Science and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Dong Ma
- Key Lab of Marine Environmental Science and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Xu Wang
- Key Lab of Marine Environmental Science and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Juan Wu
- College of Resource and Environment
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Mengchun Gao
- Key Lab of Marine Environmental Science and Ecology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| |
Collapse
|
24
|
Solvothermal preparation of copper(II) porphyrin-sensitized mesoporous TiO2 composites: enhanced photocatalytic activity and stability in degradation of 4-nitrophenol. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2349-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|