1
|
Dzień E, Wątły J, Kola A, Mikołajczyk A, Miller A, Matera-Witkiewicz A, Valensin D, Rowińska-Żyrek M. Impact of metal coordination and pH on the antimicrobial activity of histatin 5 and the products of its hydrolysis. Dalton Trans 2024; 53:7561-7570. [PMID: 38606466 DOI: 10.1039/d4dt00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This work focuses on the relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II) complexes of histatin 5 and the products of its hydrolysis: its N-terminal fragment (histatin 5-8) and C-terminal fragment (histatin 8). Cu(II) coordinates in an albumin-like binding mode and Zn(II) binds to up to 3 His imidazoles. The antimicrobial activity of histatins and their metal complexes (i) strongly depends on pH - they are more active at pH 5.4 than at 7.4; (ii) the complexes and ligands alone are more effective in eradicating Gram-positive bacteria than the Gram-negative ones, and (iii) Zn(II) coordination is able to change the structure of the N-terminal region of histatin 5 (histatin 5-8) and moderately increase all of the studied histatins' antimicrobial potency.
Collapse
Affiliation(s)
- Emilia Dzień
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aleksandra Mikołajczyk
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Adriana Miller
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | | |
Collapse
|
2
|
Truong DH, Lan Nguyen TH, Dao DQ. Revisiting the HO ●-initiated oxidation of L-proline amino acid in the aqueous phase: influence of transition metal ions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230114. [PMID: 37293362 PMCID: PMC10245202 DOI: 10.1098/rsos.230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
The oxidation of L-proline (Pro) by HO● radical in water and the influence of transition metal ions on this process has been revisited by using the density functional theory (DFT) method at the M05-2X/6-311 + + G(3df,3pd)//M05-2X/6-311 + + G(d,p) level of theory at the temperature of 298.15 K. The main reactive sites of the HO●-initiated oxidation of Pro via hydrogen atom transfer (HAT) reactions are at the β- and γ-carbon, with the branching ratios being 44.6% and 39.5%, respectively. The overall rate constant at 298.15 K is 6.04 × 108 M-1 s-1. In addition, Pro tends to form stable complexes with both Fe and Cu ions via the -COO functional group of dipole-salt form. The most stable Cu(II)-Pro complexes have high oxidant risks in enhancing the HO● formation in the presence of reducing agents. Besides this, the high oxidation state metal complexes, i.e. Fe(III)-Pro and Cu(II)-Pro, may be oxidized by HO● radical via HAT reactions but with a lower rate constant than that of free-Pro. By contrast, the low oxidation state metal complexes (i.e. Fe(II)-Pro and Cu(I)-Pro) have higher oxidation risks than the free ligands, and thus, the complexation enhances the oxidation of Pro amino acid.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
3
|
Spectroscopic characterization, DFT modeling and antimicrobial studies of some novel nanoparticles mixed ligand complexes of NS bidentate ligand in presence of 2,2′-bipyridine. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Synthesis, spectroscopic, and molecular interaction study of lead(II) complex of DL-alanine using experimental techniques and quantum chemical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Truong DH, Ngo TC, Nguyen THL, Dao DQ. Oxidation of l-leucine amino acid initiated by hydroxyl radical: are transition metal ions an enhancement factor? ROYAL SOCIETY OPEN SCIENCE 2022; 9:220316. [PMID: 36117865 PMCID: PMC9470255 DOI: 10.1098/rsos.220316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/22/2022] [Indexed: 06/10/2023]
Abstract
Hydroxyl radical (HO·) formation initiated by the Fenton-type reactions of Fe and Cu complexes of l-leucine (Leu) amino acid as well as its oxidation reaction by HO· was computationally investigated by using the density functional theory method at the M05-2X/6-311++G(3df,2pd)//M05-2X/6-311++G(d,p) level of theory in the aqueous phase. The results showed that dipole-salt is the main form of Leu in the physiological condition. Leu exhibits high chelating potential towards both Fe(III)/Fe(II) and Cu(II)/Cu(I) ions with the most favourable coordinating positions at two oxygen atoms of the -COO functional group. Furthermore, the Leu-ions complexes show a high risk of HO· formation via Fenton-like reactions, especially when ascorbate anion exists in the environment as a reducing agent. Finally, the oxidation reaction of l-leucine by HO· demonstrated a relatively high overall apparent reaction rate, k overall, being 1.18 × 109 M-1 s-1, in which formal hydrogen transfer reactions of the dipole-salt form occur as the primary mechanism. Consequently, the Leu oxidation by HO· radical can be promoted by the Fenton reaction enhancement of its transition metal complexes.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
6
|
Hasan MM, Shahriar I, Ali MA, Halim M, Ehsan MQ. Experimental and computational studies on Transition metals Interaction with Leucine and Isoleucine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Zhang X, Jiao C, Li X, Song X, Plisko TV, Bildyukevich AV, Jiang H. Zn ion-modulated polyamide membrane with enhanced facilitated transport effect for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Liu X, Wu M, Li C, Yu P, Feng S, Li Y, Zhang Q. Interaction Structure and Affinity of Zwitterionic Amino Acids with Important Metal Cations (Cd 2+, Cu 2+, Fe 3+, Hg 2+, Mn 2+, Ni 2+ and Zn 2+) in Aqueous Solution: A Theoretical Study. Molecules 2022; 27:molecules27082407. [PMID: 35458605 PMCID: PMC9028192 DOI: 10.3390/molecules27082407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023] Open
Abstract
Heavy metals are non-biodegradable and carcinogenic pollutants with great bio-accumulation potential. Their ubiquitous occurrence in water and soils has caused serious environmental concerns. Effective strategies that can eliminate the heavy metal pollution are urgently needed. Here the adsorption potential of seven heavy metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) with 20 amino acids was systematically investigated with Density Functional Theory method. The binding energies calculated at B3LYP-D3/def2TZVP level showed that the contribution order of amino acid side chains to the binding affinity was carboxyl > benzene ring > hydroxyl > sulfhydryl > amino group. The affinity order was inversely proportional to the radius and charge transfer of heavy metal cations, approximately following the order of: Ni2+ > Fe3+ > Cu2+ > Hg2+ > Zn2+ > Cd2+ > Mn2+. Compared to the gas-phase in other researches, the water environment has a significant influence on structures and binding energies of the heavy metal and amino acid binary complexes. Collectively, the present results will provide a basis for the design of a chelating agent (e.g., adding carboxyl or a benzene ring) to effectively remove heavy metals from the environment.
Collapse
Affiliation(s)
- Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China; (X.L.); (Q.Z.)
| | - Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; (M.W.); (P.Y.)
| | - Chenchen Li
- School of Management, Ocean University of China, Qingdao 266101, China;
| | - Peng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; (M.W.); (P.Y.)
| | - Shanshan Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China; (X.L.); (Q.Z.)
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
- Correspondence: ; Tel.: +86-0532-58631990
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China; (X.L.); (Q.Z.)
| |
Collapse
|
9
|
Chetry N, Gomti Devi T, Karlo T. Synthesis and characterization of metal complex amino acid using spectroscopic methods and theoretical calculation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Berestova TV, Gizatov RR, Galimov MN, Mustafin AG. Influence of the absolute configuration of the ligand's chiral center on the structure of planar-square phenyl-containing bis-(N,O)copper(II) chelates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Synthesis and characterization of Cd (L-Proline)2 complex using vibrational spectroscopy and quantum chemical calculation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Hossain MJ, Rashid MA, Sultan MZ. Transition Metal Chelation Augments the Half-life of Secnidazole: Molecular Docking and Fluorescence Spectroscopic Approaches. Drug Res (Stuttg) 2020; 70:583-592. [PMID: 33098081 DOI: 10.1055/a-1252-2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This current research aimed to establish the most required pharmacodynamics parameters of two transition metal complexes of an antimicrobial drug secnidazole. The spectroscopic fluorescence quenching strategy was outlined to evaluate the binding mechanism and binding affinity of nickel (II) and chromium (III) complexes of secnidazole with bovine serum albumin (BSA). The conformational modifications and the interacting patterns of the protein due to the interaction of the parent compound of the metal complexes have been investigated by molecular docking approach. The ligand-protein interactions were confirmed by the spectral quelling of the serum protein's intensity in the presence of metal chelate of secnidazole. The quenching mechanism was an endothermic dynamic process. The calculated thermodynamic factors delineated van der Waals interactions mainly influenced the spontaneous process. The UV-fluorescence curves were studied to establish the energy transformation profile according to the Förster resonance energy transfer (FRET) theory. The double-logarithm plot exhibited the binding number that ensured the drug-protein interaction was at a 1:1 ratio. The compared binding constants dictated that both metal chelates gained higher binding affinity, longer half-life, and achieved the capacity to show the pharmacological effects by a lower dose than the parent molecule.
Collapse
Affiliation(s)
- Md Jamal Hossain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad A Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Zakir Sultan
- Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
13
|
Makam P, Yamijala SSRKC, Tao K, Shimon LJW, Eisenberg DS, Sawaya MR, Wong BM, Gazit E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat Catal 2019; 2:977-985. [PMID: 31742246 PMCID: PMC6861134 DOI: 10.1038/s41929-019-0348-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Enzymatic activity is crucial for various technological applications, yet the complex structures and limited stability of enzymes often hinder their use. Hence, de novo design of robust biocatalysts that are much simpler than their natural counterparts and possess enhanced catalytic activity has long been a goal in biotechnology. Here, we present evidence for the ability of a single amino acid to self-assemble into a potent and stable catalytic structural entity. Spontaneously, phenylalanine (F) molecules coordinate with zinc ions to form a robust, layered, supramolecular amyloid-like ordered architecture (F-Zn(ii)) and exhibit remarkable carbonic anhydrase-like catalytic activity. Notably, amongst the reported artificial biomolecular hydrolases, F-Zn(ii) displays the lowest molecular mass and highest catalytic efficiency, in addition to reusability, thermal stability, substrate specificity, stereoselectivity and rapid catalytic CO2 hydration ability. Thus, this report provides a rational path towards future de novo design of minimalistic biocatalysts for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Linda J. W. Shimon
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - David S. Eisenberg
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael R. Sawaya
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan M. Wong
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Jain Y, Kumari M, Gupta R. Sonochemical synthesis of fluorescent 1,4-disubstituted triazoles using l-phenylalanine as an accelerator ligand in aqueous media. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Jayachandran P, Angamuthu A, Gopalan P. Quantum Chemical Study on the Structure and Energetics of Binary Ionic Porphyrin Complexes. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Abiram Angamuthu
- Department of Physics; Karunya Institute of Technology and Sciences; Coimbatore 641114 India
| | - Praveena Gopalan
- Department of Physics; PSGR Krishnammal College for Women; Coimbatore 641004 India
| |
Collapse
|
16
|
Landaeta VR, Barrera Y, del Carpio E, Nóbrega A, Rodríguez-Lugo RE, Coll-Gómez DS, Lubes V. Ternary complex formation in the system Ni(II) with picolinic acid and selected amino acids: Solution studies, isolation and computational calculations. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Bdiri B, Zhou ZM. Novel asymmetric synthesis of spiroindene-1,3dione-pyrrolidines via CoII/amino acids complex catalysed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 2-arylidenindane-1,3-diones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Rahman MS, Hossain SM, Rahman MT, Halim MA, Ishtiak MN, Kabir M. Determination of trace metal concentration in compost, DAP, and TSP fertilizers by neutron activation analysis (NAA) and insights from density functional theory calculations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:618. [PMID: 29119383 DOI: 10.1007/s10661-017-6328-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Leaching of toxic metals from fertilizers is a growing concern in an agricultural country like Bangladesh due to the serious consequences in health and food chain. Fertilizers used in farming fields and nurseries (plant sales outlet) in the mid-southern part of Bangladesh were collected for the determination of toxic metals. This study employed the neutron activation method and a relative standardization approach. Three standard/certified reference materials, namely NIST coal fly ash 1633b, IAEA-Soil-7, and IAEA-SL-1 (lake sediment), were considered for elemental quantification. Concentration of As (2.63-16.73 mg/kg), Cr (40.93-261.77 mg/kg), Sb (0.47-63.58 mg/kg), Th (1.44-19.16 mg/kg), and U (1.90-209.41 mg/kg) were determined in fertilizers. High concentrations of Cr, Sb, and U were detected in some compost and phosphate fertilizers (TSP and diammonium phosphate (DAP)) in comparison with the IAEA/European market standard and other studies. Quantum mechanical calculations were performed to understand the molecular level interaction of CrO3, Sb2O3, and AsO3, with DAP by employing density functional theory with the B3LYP/SDD level of theory. Our results indicated that CrO3 and Sb2O3 have strong binding affinity with DAP compared to AsO3, which supports the experimental results. These compounds attached to the phosphate group through covalent-like bonding with oxygen. The frontier molecular orbital calculation indicated that HOMO-LUMO gap of the AsO3-DAP (5.46 eV) and Sb2O3-DAP (6.48 eV) complexes are relatively lower than the CrO3-DAP, which indicates that As and Sb oxides are chemically more prone to attach with the phosphate group of DAP fertilizer.
Collapse
Affiliation(s)
- Md Sajjadur Rahman
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Syed Mohammod Hossain
- Reactor and Neutron Physics Division, INST, Atomic Energy Research Establishment, Savar, GPO Box-3787, Dhaka, 1000, Bangladesh
| | - Mir Tamzid Rahman
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
| | - Mohammad A Halim
- Division of Quantum Chemistry, Green Research Centre, BICCB, 38 Green Road West, Dhaka, 1205, Bangladesh
| | - Mohammad Niaz Ishtiak
- Division of Quantum Chemistry, Green Research Centre, BICCB, 38 Green Road West, Dhaka, 1205, Bangladesh
| | - Mahbub Kabir
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
19
|
Synthesis, characterization, density functional study and antimicrobial evaluation of a series of bischelated complexes with a dithiocarbazate Schiff base ligand. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Majerz I, Trynda-Lemiesz L. Copper(II) ion as modulator of the conformation of non-steroidal anti-inflammatory drugs. Theoretical insight into the structure. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|