1
|
Chen JY, Yang P, Huang HY, Tang AL, Ge MH, Niu W, Liu ST, Tan S, Ma WJ, Zhou X, Liu LW, Yang S. Rhodamine-based fluorescent sensors for the rapid and selective off-on detection of salicylic acid and their use in plant cell imaging. Org Biomol Chem 2023; 21:6783-6788. [PMID: 37565619 DOI: 10.1039/d3ob01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Salicylic acid (SA) is a key hormone that regulates plant growth and immunity, and understanding the physiologic processes induced by SA enables the development of highly pathogen-resistant crops. Here, we report the synthesis of three new SA-sensors (R1-R3) from hydroxyphenol derivatives of a rhodamine-acylhydrazone scaffold and their characterization by NMR and HRMS. Spectroscopic analyses revealed that structural variations in R1-R3 resulted in sensors with different sensitivities for SA. Sensor R2 (with the 3-hydroxyphenyl modification) outperformed R1 (2-hydroxyphenyl) and R3 (4-hydroxyphenyl). The SA-detection limit of R2 is 0.9 μM with an ultra-fast response time (<60 s). In addition, their plant imaging indicated that designed sensor R2 is useful for the further study of SA biology and the discovery and development of new inducers of plant immunity.
Collapse
Affiliation(s)
- Jie-Ying Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Ping Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Hou-Yun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - A-Ling Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Mei-Hong Ge
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Wei Niu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Shuai Tan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Wen-Jing Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhang L, Chen M, Li Z, Teng Y, Wang G, Xue Y. Photophysical properties and sensing mechanism of fluorescent coumarin–chalcone hybrid for biothiols: A theoretical study. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China
| | - Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Yangxin Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Guirong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| |
Collapse
|
3
|
Li B, Zhang D, An R, Zhu Y. A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications. Molecules 2019; 24:E3102. [PMID: 31461829 PMCID: PMC6749190 DOI: 10.3390/molecules24173102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/04/2023] Open
Abstract
In this work, a novel 7-hydroxybenzoxazinone-based fluorescent probe (PBD) for the selective sensing of biothiols is reported. Upon treatment with biothiols, PBD shows a strong fluorescence enhancement (up to 70-fold) and a large Stokes shift (155 nm). Meanwhile, this probe exhibits high resistance to interference from other amino acids and competing species. PBD features good linearity ranges with a low detection limit of 14.5 nM for glutathione (GSH), 17.5 nM for cysteine (Cys), and 80.0 nM for homocysteine (Hcy), respectively. Finally, the potential utility of this probe for biothiol sensing in living HeLa cells is demonstrated.
Collapse
Affiliation(s)
- Bin Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Datong Zhang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China.
| | - Ruibing An
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| | - Yaling Zhu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China
| |
Collapse
|
4
|
Huang J, Chen Y, Qi J, Zhou X, Niu L, Yan Z, Wang J, Zhao G. A dual-selective fluorescent probe for discriminating glutathione and homocysteine simultaneously. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:105-111. [PMID: 29738890 DOI: 10.1016/j.saa.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Homocysteine (Hcy) and glutathione (GSH) play important roles in a variety of physiological and pathological processes. Abnormal levels of Hcy and GSH are related to various diseases. Fluorescent probes for detecting them with sensitive and selective are highly desirable. However, efficient discrimination of Hcy and GSH is still a challenge for their similar molecular structures and chemical properties. Herein, we report a naphthalimide and sulfonyl benzoxadiazole (SBD) based dual-selective fluorescent probe for Hcy and GSH over other amino acids. The probe exhibited weak fluorescence (Φ = 0.075, in DMSO) at 490 nm and fluorescence enhancement upon addition of GSH (1-20 μM) with a detection limit of 0.8 μM. The probe also exhibited ratiometric fluorescence responses for Hcy (fluorescence at 490 nm decreased and fluorescence at 552 nm increased). The fluorescence intensity ratio (I552/I490) showed a good linear correlation with the Hcy concentrations in range of 3-20 μM and the detection limit was 0.1 μM. Moreover, this probe was successfully utilized for monitoring Hcy and GSH in living cells.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Yanan Chen
- Institute of Behavior and Psychology, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China.
| | - Xiaomin Zhou
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Zhijie Yan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China.
| | - Guoxiang Zhao
- Institute of Behavior and Psychology, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| |
Collapse
|
5
|
Abebe F, Sutton T, Perkins P, Makins-Dennis K, Winstead A. Microwave-assisted synthesis of rhodamine derivatives. GREEN CHEMISTRY LETTERS AND REVIEWS 2018; 11:237-245. [PMID: 32194653 PMCID: PMC7082095 DOI: 10.1080/17518253.2018.1472814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 06/10/2023]
Abstract
The microwave synthesis of 12 rhodamine-derived imines is described. The present work involves condensation of rhodamine hydrazide with various aromatic aldehydes in ethanol under microwave irradiation. The results obtained indicate that, unlike classical heating, microwave irradiation results in higher yields, shorter reaction time, mild reaction condition and simple work-up procedure. The structures of synthesized compounds were confirmed by 1H-NMR, 13C-NMR, FT-IR and high-resolution mass spectra data.
Collapse
Affiliation(s)
- Fasil Abebe
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Treshaun Sutton
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Pierce Perkins
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | | | - Angela Winstead
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
6
|
Yan X, Wang B, Wang X, Jin D, Li X. An Indocyanine-Based Turn-On Fluorescent Probe for Specific Detection of Biothiols. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Yin CX, Xiong KM, Huo FJ, Salamanca JC, Strongin RM. Fluorescent Probes with Multiple Binding Sites for the Discrimination of Cys, Hcy, and GSH. Angew Chem Int Ed Engl 2017; 56:13188-13198. [PMID: 28703457 DOI: 10.1002/anie.201704084] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) play crucial roles in maintaining redox homeostasis in biological systems. This Minireview summarizes the most significant current challenges in the field of thiol-reactive probes for biomedical research and diagnostics, emphasizing the needs and opportunities that have been under-investigated by chemists in the selective probe and sensor field. Progress on multiple binding site probes to distinguish Cys, Hcy, and GSH is highlighted as a creative new direction in the field that can enable simultaneous, accurate ratiometric monitoring. New probe design strategies and researcher priorities can better help address current challenges, including the monitoring of disease states such as autism and chronic diseases involving oxidative stress that are characterized by divergent levels of GSH, Cys, and Hcy.
Collapse
Affiliation(s)
- Cai-Xia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education Institute of Molecular Science,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Kang-Ming Xiong
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education Institute of Molecular Science,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Fang-Jun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - James C Salamanca
- Department of Chemistry, Portland state University, Portland, OR, 97201, USA
| | - Robert M Strongin
- Department of Chemistry, Portland state University, Portland, OR, 97201, USA
| |
Collapse
|
8
|
Yin CX, Xiong KM, Huo FJ, Salamanca JC, Strongin RM. Fluoreszenzsonden mit mehreren Bindungsstellen unterscheiden zwischen Cys, Hcy und GSH. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cai-Xia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering des Bildungsministeriums, Institut für Molekularwissenschaften, Key Laboratory of Materials for Energy Conversion and Storage der Provinz Shanxi; Universität Shanxi; Taiyuan 030006 China
| | - Kang-Ming Xiong
- Key Laboratory of Chemical Biology and Molecular Engineering des Bildungsministeriums, Institut für Molekularwissenschaften, Key Laboratory of Materials for Energy Conversion and Storage der Provinz Shanxi; Universität Shanxi; Taiyuan 030006 China
| | - Fang-Jun Huo
- Forschungsinstitut für Angewandte Chemie; Universität Shanxi; Taiyuan 030006 China
| | | | | |
Collapse
|
9
|
Wei LF, Thirumalaivasan N, Liao YC, Wu SP. Fluorescent coumarin-based probe for cysteine and homocysteine with live cell application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:204-208. [PMID: 28454072 DOI: 10.1016/j.saa.2017.04.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Cysteine (Cys) and homocysteine (Hcy) are two of important biological thiols and function as important roles in several biological processes. The development of Cys and Hcy probes will help to explore the functions of biothiols in biological systems. In this work, a new coumarin-based probe AC, containing an acryloyl moiety, was developed for Cys and Hcy detection in cells. Cys and Hcy undergo a nucleophilic addition and subsequent cyclization reaction to remove to the acryloyl group and yield a fluorescent product, 7-hydroxylcomuarin. The probe AC showed good selectivity for cysteine and homocysteine over glutathione and other amino acids and had low detection limits of 65nM for Cys and 79nM for Hcy, respectively. Additionally, confocal imaging experiments demonstrated that the probe AC can be applied to visualize Cys and Hcy in living cells.
Collapse
Affiliation(s)
- Ling-Fang Wei
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | - Yu-Cheng Liao
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
10
|
A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Biosens Bioelectron 2017; 92:583-588. [DOI: 10.1016/j.bios.2016.10.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/24/2023]
|