1
|
Serna-Cardona N, Zamora-Leiva L, Sánchez-Carvajal E, Claverías FP, Cumsille A, Pentón KA, Vivanco B, Tietze A, Tessini C, Cámara B. Unveiling metabolo-genomic insights of potent antitumoral and antibiotic activity in Streptomyces sp. VB1 from Valparaíso Bay. Front Microbiol 2024; 15:1463911. [PMID: 39417076 PMCID: PMC11479970 DOI: 10.3389/fmicb.2024.1463911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Streptomyces sp. VB1, an actinomycete isolated from marine sediments in Valparaíso Bay, Chile, synthesizes antimicrobial and antiproliferative compounds. This study presents comprehensive metabolomics and comparative genomics analyses of strain VB1. LC-HRMS dereplication and Molecular Networking analysis of crude extracts identified antibiotics such as globomycin and daunorubicin, along with known and potentially novel members of the arylomycin family. These compounds exhibit activity against a range of clinically relevant bacterial and cancer cell lines. Phylogenomic analysis underscores the uniqueness of strain VB1, suggesting it represents a novel taxon. Such uniqueness is further supported by its Biosynthetic Novelty Index (BiNI) and BiG-SCAPE analysis of Gene Cluster Families (GCFs). Notably, two Biosynthetic Gene Clusters (BGCs) were found to be unique to VB1 compared to closely related strains: BGC #15, which encodes potentially novel anthracycline compounds with cancer cell growth inhibition properties, and BGC #28, which features a non-canonical configuration combining arylomycin, globomycin, and siamycin BGCs. This supercluster, the first described to consist of more than two adjacent and functional BGCs, co-produces at least three antimicrobial compounds from different antibiotic families. These findings highlight Streptomyces sp. VB1's potential for discovering new bioactive molecules, positioning it as a promising candidate for further research.
Collapse
Affiliation(s)
- Néstor Serna-Cardona
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Eduardo Sánchez-Carvajal
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Fernanda P. Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Karla Alexa Pentón
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Beatriz Vivanco
- Laboratorio de Electroquímica y Química Analítica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Alesia Tietze
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- The Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance research, University of Gothenburg, Gothenburg, Sweden
| | - Catherine Tessini
- Laboratorio de Electroquímica y Química Analítica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| |
Collapse
|
2
|
Beigrezaei A, Rafipour R. Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells. Biotechnol Appl Biochem 2024. [PMID: 39324205 DOI: 10.1002/bab.2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/24/2024] [Indexed: 09/27/2024]
Abstract
Daunorubicin (DAU) is a chemotherapy drug approved for the treatment of some cancers. However, the clinical compatibility of DAU is limited due to its lack of specificity and its highly toxic effects, which interfere with normal cells. This toxicity can be reduced with nanocarriers and targeted drug delivery systems. In this study, to develop the drug delivery of DAU, the surface of synthesized nanoparticles was modified by folic acid to target cancer cells optimally. Encapsulation of DAU in protein sodium caseinate (NaCAS) was done by adding calcium ions to bring the casein (CAS) in the solution to a micellar structure to synthesize dense nanoparticles. Fourier-transform infrared spectroscopy transmission, fluorescence spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, and zeta potential studies designed and distinguished the synthesized nanocomplexes. The results showed that CAS nanoparticles successfully encapsulated DAU, and the protein surface was targeted by folic acid. Light scattering analysis determined that the particles with a scattering index number of 306.0 and an average size of 8.117 nm were synthesized. The zeta potential of CAS micelles is more harmful than CAS nanoparticles. This is because calcium ions are added during the formation of CAS nanoparticles during the drug-loading stages. These studies prove that the synthesized "NaCAS-DAU" and "NaCAS-DAU-folic acid" complexes can be favorable carriers in the targeted drug delivery of cancer drugs.
Collapse
Affiliation(s)
- Ali Beigrezaei
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
3
|
Majzner K, Deckert-Gaudig T, Baranska M, Deckert V. DOX-DNA Interactions on the Nanoscale: In Situ Studies Using Tip-Enhanced Raman Scattering. Anal Chem 2024; 96:8905-8913. [PMID: 38771097 PMCID: PMC11154666 DOI: 10.1021/acs.analchem.3c05372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Chemotherapeutic anthracyclines, like doxorubicin (DOX), are drugs endowed with cytostatic activity and are widely used in antitumor therapy. Their molecular mechanism of action involves the formation of a stable anthracycline-DNA complex, which prevents cell division and results in cell death. It is known that elevated DOX concentrations induce DNA chain loops and overlaps. Here, for the first time, tip-enhanced Raman scattering was used to identify and localize intercalated DOX in isolated double-stranded calf thymus DNA, and the correlated near-field spectroscopic and morphologic experiments locate the DOX molecules in the DNA and provide further information regarding specific DOX-nucleobase interactions. Thus, the study provides a tool specifically for identifying intercalation markers and generally analyzing drug-DNA interactions. The structure of such complexes down to the molecular level provides mechanistic information about cytotoxicity and the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Majzner
- Department
of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tanja Deckert-Gaudig
- Friedrich
Schiller University Jena, Institute of Physical Chemistry and Abbe
Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
- Leibniz
Insti-tute of Photonic Technology, Albert-Einstein-Str.9, Jena 07745, Germany
| | - Malgorzata Baranska
- Department
of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
Centre for Exper-Imental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Volker Deckert
- Friedrich
Schiller University Jena, Institute of Physical Chemistry and Abbe
Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
- Leibniz
Insti-tute of Photonic Technology, Albert-Einstein-Str.9, Jena 07745, Germany
| |
Collapse
|
4
|
Zhou S, Feng X, Bai J, Sun D, Yao B, Wang K. Synergistic effects and competitive relationships between DOC and DOX as acting on DNA molecules: Studied with confocal Raman spectroscopy and molecular docking technology. Heliyon 2024; 10:e30233. [PMID: 38707315 PMCID: PMC11066432 DOI: 10.1016/j.heliyon.2024.e30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Docetaxel (DOC) is one of the second-generation antineoplastic drugs of the taxanes family with excellent antitumor activity. However, the mechanism of DOC inducing tumor cell apoptosis and treating cancer diseases, especially its interaction with DNA in the nucleus, and its adjuvant or combined Doxorubicin (DOX) acting on DNA molecules are unclear. In this study, the interaction mechanism between DOC and DNA, as well as the synergistic effects and competitive relationships among DOC and DOX when they simultaneously interact with DNA molecules were studied by laser confocal Raman spectroscopy combined with UV-visible absorption spectroscopy and molecular docking technology. The spectroscopic results showed that the binding constant of DOC to DNA is 5.25 × 103 M-1, the binding modes of DOC and DNA are non-classical intercalation and electrostatic binding, and the DNA-DOC complex has good stability. When DOC or DOX interacts with DNA alone, both of them can bind with bases and phosphate backbone of DNA, and also lead to DNA conformation changes; when DOC and DOX interact with DNA at the same time, the orders of interaction not only affect their binding sites with DNA, but also cause changes in the surrounding environment of the binding sites. In addition, the molecular docking results further verified that DOC and DOX have synergy and competition when they interact with DNA molecules simultaneously. The docking energies of DNA-DOC and DNA-DOX indicate the important role of van der Waals forces and hydrogen bonds. This study has practical significance for the design and development of antitumor drugs with less toxic based on the taxanes family and the combination with other drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Suli Zhou
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Xiaoqiang Feng
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Jintao Bai
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Dan Sun
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Kaige Wang
- Key Laboratory of Photoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China
| |
Collapse
|
5
|
He W, Chen Z, Yu C, Shen Y, Wu D, Liu N, Zhang X, Wu F, Chen J, Zhang T, Lan J. Unlabelled LRET biosensor based on double-stranded DNA for the detection of anthraquinone anticancer drugs. Mikrochim Acta 2023; 191:15. [PMID: 38087000 DOI: 10.1007/s00604-023-06076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Based on upconversion nanoparticles (UCNPs) as energy donor and herring sperm DNA (hsDNA) as molecular recognition element, an unlabelled upconversion luminescence (UCL) affinity biosensor was constructed for the detection of anthraquinone (AQ) anticancer drugs in biological fluids. AQ anticancer drugs can insert into the double helix structure of hsDNA on the surface of UCNPs, thereby shortening the distance from UCNPs. Therefore, the luminescence resonance energy transfer (LRET) phenomenon is effectively triggered between UCNPs and AQ anticancer drugs. Hence, AQ anticancer drugs can be quantitatively detected according to the UCL quenching rate. The biosensor showed good sensitivity and stability for the detection of daunorubicin (DNR) and doxorubicin (ADM). For the detection of DNR, the linear range is 1-100 μg·mL-1 with a limit of detection (LOD) of 0.60 μg·mL-1, and for ADM, the linear range is 0.5-100 μg·mL-1 with a LOD of 0.38 μg·mL-1. The proposed biosensor provides a convenient method for monitoring AQ anticancer drugs in clinical biological fluids in the future.
Collapse
Affiliation(s)
- Wenhui He
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China
| | - Zhiwei Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Chunxiao Yu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Yiping Shen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Dongzhi Wu
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China
| | - Nannan Liu
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China
| | - Xi Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Fang Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Tao Zhang
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China.
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| |
Collapse
|
6
|
Mirveis Z, Howe O, Cahill P, Patil N, Byrne HJ. Monitoring and modelling the glutamine metabolic pathway: a review and future perspectives. Metabolomics 2023; 19:67. [PMID: 37482587 PMCID: PMC10363518 DOI: 10.1007/s11306-023-02031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Analysis of the glutamine metabolic pathway has taken a special place in metabolomics research in recent years, given its important role in cell biosynthesis and bioenergetics across several disorders, especially in cancer cell survival. The science of metabolomics addresses the intricate intracellular metabolic network by exploring and understanding how cells function and respond to external or internal perturbations to identify potential therapeutic targets. However, despite recent advances in metabolomics, monitoring the kinetics of a metabolic pathway in a living cell in situ, real-time and holistically remains a significant challenge. AIM This review paper explores the range of analytical approaches for monitoring metabolic pathways, as well as physicochemical modeling techniques, with a focus on glutamine metabolism. We discuss the advantages and disadvantages of each method and explore the potential of label-free Raman microspectroscopy, in conjunction with kinetic modeling, to enable real-time and in situ monitoring of the cellular kinetics of the glutamine metabolic pathway. KEY SCIENTIFIC CONCEPTS Given its important role in cell metabolism, the ability to monitor and model the glutamine metabolic pathways are highlighted. Novel, label free approaches have the potential to revolutionise metabolic biosensing, laying the foundation for a new paradigm in metabolomics research and addressing the challenges in monitoring metabolic pathways in living cells.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland.
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological, Health and Sport Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
7
|
Zhang X, Li X, Wang D, Weng T, Wang L, Yuan L, Wang Q, Liu J, Wu Y, Liu M. Spectroscopic, calorimetric and cytotoxicity studies on the combined binding of daunorubicin and acridine orange to a DNA tetrahedron. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122583. [PMID: 36905740 DOI: 10.1016/j.saa.2023.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Chemotherapy-phototherapy (CTPT) combination drugs co-loaded by targeted DNA nanostructures can achieve controlled drug delivery, reduce toxic side effects and overcome multidrug resistance. Herein, we constructed and characterized a DNA tetrahedral nanostructure (MUC1-TD) linked with the targeting aptamer MUC1. The interaction of daunorubicin (DAU)/acridine orange (AO) alone and in combination with MUC1-TD and the influence of the interaction on the cytotoxicity of the drugs were evaluated. Potassium ferrocyanide quenching analysis and DNA melting temperature assays were used to demonstrate the intercalative binding of DAU/AO to MUC1-TD. The interactions of DAU and/or AO with MUC1-TD were analyzed by fluorescence spectroscopy and differential scanning calorimetry. The number of binding sites, binding constant, entropy and enthalpy changes of the binding process were obtained. The binding strength and binding sites of DAU were higher than those of AO. The presence of AO in the ternary system weakened the binding of DAU to MUC1-TD. In vitro cytotoxicity studies demonstrated that the loading of MUC1-TD augmented the inhibitory effects of DAU and AO and the synergistic cytotoxic effects of DAU + AO on MCF-7 cells and MCF-7/ADR cells. Cell uptake studies showed that the loading of MUC1-TD was beneficial in promoting the apoptosis of MCF-7/ADR cells due to its enhanced targeting to the nucleus. This study has important guiding significance for the combined application of DAU and AO co-loaded by DNA nanostructures to overcome multidrug resistance.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Xinyu Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Danfeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Tianxin Weng
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Lixia Yuan
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| |
Collapse
|
8
|
Gómez S, Lafiosca P, Egidi F, Giovannini T, Cappelli C. UV-Resonance Raman Spectra of Systems in Complex Environments: A Multiscale Modeling Applied to Doxorubicin Intercalated into DNA. J Chem Inf Model 2023; 63:1208-1217. [PMID: 36745496 PMCID: PMC9976284 DOI: 10.1021/acs.jcim.2c01495] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UV-Resonance Raman (RR) spectroscopy is a valuable tool to study the binding of drugs to biomolecular receptors. The extraction of information at the molecular level from experimental RR spectra is made much easier and more complete thanks to the use of computational approaches, specifically tuned to deal with the complexity of the supramolecular system. In this paper, we propose a protocol to simulate RR spectra of complex systems at different levels of sophistication, by exploiting a quantum mechanics/molecular mechanics (QM/MM) approach. The approach is challenged to investigate RR spectra of a widely used chemotherapy drug, doxorubicin (DOX) intercalated into a DNA double strand. The computed results show good agreement with experimental data, thus confirming the reliability of the computational protocol.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy,E-mail:
| | - Piero Lafiosca
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Software
for Chemistry and Materials BV, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Tommaso Giovannini
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy,E-mail:
| |
Collapse
|
9
|
Synthesis of Magneto-Controllable Polymer Nanocarrier Based on Poly(N-isopropylacrylamide-co-acrylic Acid) for Doxorubicin Immobilization. Polymers (Basel) 2022; 14:polym14245440. [PMID: 36559806 PMCID: PMC9784437 DOI: 10.3390/polym14245440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, the preparation procedure and properties of anionic magnetic microgels loaded with antitumor drug doxorubicin are described. The functional microgels were produced via the in situ formation of iron nanoparticles in an aqueous dispersion of polymer microgels based on poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-PAA). The composition and morphology of the resulting composite microgels were studied by means of X-ray diffraction, Mössbauer spectroscopy, IR spectroscopy, scanning electron microscopy, atomic-force microscopy, laser microelectrophoresis, and static and dynamic light scattering. The forming nanoparticles were found to be β-FeO(OH). In physiological pH and ionic strength, the obtained composite microgels were shown to possess high colloid stability. The average size of the composites was 200 nm, while the zeta-potential was -27.5 mV. An optical tweezers study has demonstrated the possibility of manipulation with microgel using external magnetic fields. Loading of the composite microgel with doxorubicin did not lead to any change in particle size and colloidal stability. Magnetic-driven interaction of the drug-loaded microgel with model cell membranes was demonstrated by fluorescence microscopy. The described magnetic microgels demonstrate the potential for the controlled delivery of biologically active substances.
Collapse
|
10
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
11
|
Pérez-Guaita D, Quintás G, Farhane Z, Tauler R, Byrne HJ. Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells 2022; 11:1555. [PMID: 35563861 PMCID: PMC9099467 DOI: 10.3390/cells11091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations. Advantages of and challenges to the methodology were evaluated using simulated Raman spectral data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations used, and the importance of the temporal resolution of the data set to enable the use of complex equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more comprehensive modelling of the system, enabling the elucidation of not only the time-dependent concentration profiles and spectral features of the drug binding and cellular responses, but also an accurate computation of the kinetic constants.
Collapse
Affiliation(s)
- David Pérez-Guaita
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
- Department of Anaytical Chemistry, University of Valencia, 46100 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Centre, 08028 Barcelona, Spain;
| | - Zeineb Farhane
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| | - Romá Tauler
- Institute of Environmental Assessment and Water Research (IDAEA)—Higher Council for Scientific Research (CSIC), 08043 Barcelona, Spain;
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| |
Collapse
|
12
|
Maharjan S, Gautam M, Poudel K, Yong CS, Ku SK, Kim JO, Byeon JH. Streamlined plug-in aerosol prototype for reconfigurable manufacture of nano-drug delivery systems. Biomaterials 2022; 284:121511. [DOI: 10.1016/j.biomaterials.2022.121511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
|
13
|
Abstract
This study investigated the application of an advanced electrooxidation process with three-dimensional tin oxide deposited onto a titanium plate anode, named 3-D Ti/SnO2, for the degradation and mineralization of one of the most important emerging contaminants with cytostatic properties, doxorubicin (DOX). The anode was synthesized using a commercial Ti plate, with corrosion control in acidic medium, used as a substrate for SnO2 deposition by the spin-coating method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that porous SnO2 was obtained, and the rutile phase of TiO2 was identified as an intermediary substrate onto the Ti plate. The results of CV analysis allowed us to determine the optimal operating conditions for the electrooxidation process conducted under a constant potential regime, controlled by the electron transfer or the diffusion mechanisms, involving hydroxyl radicals. The determination of UV–VIS spectra, total organic carbon (TOC), and chemical oxygen demand (COD) allowed us to identify the degradation mechanism and pathway of DOX onto the 3-D Ti/SnO2 anode. The effective degradation and mineralization of DOX contained in water by the electrooxidation process with this new 3-D dimensionally stable anode (DSA) was demonstrated in this study.
Collapse
|
14
|
Abri-Mehraban F, Zargar SJ, Salarizadeh N. The effect of glucose on doxorubicin and human hemoglobin interaction: Characterization with spectroscopic techniques. Int J Biol Macromol 2021; 181:193-201. [PMID: 33771549 DOI: 10.1016/j.ijbiomac.2021.03.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
The application of doxorubicin (DOX), which is the most effective anticancer drug, is limited due to its cardiac toxicity. The study of DOX-hemoglobin (Hb) interaction has biochemical and toxicological importance. Understanding the Hb-DOX interaction in the presence of glucose (Glc), as the main blood sugar, can be advantageous for clinical implications. In this study, the structural changes imposed by DOX on Hb in the presence of various concentrations of Glc were investigated using different methods such as UV-Vis, fluorescence, and circular dichroism (CD) spectroscopy. The results obtained by the spectroscopic techniques revealed that the hyperchromic effect, which was observed after treating Hb with DOX, was relieved in the presence of Glc. Based on the results of fluorescence spectroscopy, some of the photons emitted from the tryptophan (Trp) residues were quenched due to DOX binding. Since the Trp residues were exposed, the intrinsic fluorescence of Hb increased but the residues might not have been competent for DOX binding anymore. The results of the CD technique demonstrated that the levels of the alpha-helix structure were significantly reduced when Hb was simultaneously treated with DOX and Glc. Thermal stability studies revealed that the melting temperature of Hb increased in the presence of Glc alone. However, the thermal stability of Hb decreased in the presence of Glc/DOX (combined). Since the concentration of Glc in diabetic patients is significantly higher than in healthy individuals, the toxic effects of DOX, due to its interaction with Hb, may be different in healthy and diabetic subjects.
Collapse
Affiliation(s)
- Fatemeh Abri-Mehraban
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Jalal Zargar
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Navvabeh Salarizadeh
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Czamara K, Adamczyk A, Stojak M, Radwan B, Baranska M. Astaxanthin as a new Raman probe for biosensing of specific subcellular lipidic structures: can we detect lipids in cells under resonance conditions? Cell Mol Life Sci 2020; 78:3477-3484. [PMID: 33289850 PMCID: PMC8038953 DOI: 10.1007/s00018-020-03718-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 01/11/2023]
Abstract
Here we report a new Raman probe for cellular studies on lipids detection and distribution. It is (3S, 3'S)-astaxanthin (AXT), a natural xanthophyll of hydrophobic properties and high solubility in lipids. It contains a chromophore group, a long polyene chain of eleven conjugated C=C bonds including two in the terminal rings, absorbing light in the visible range that coincides with the excitation of lasers commonly used in Raman spectroscopy for studying of biological samples. Depending on the laser, resonance (excitation in the visible range) or pre-resonance (the near infrared range) Raman spectrum of astaxanthin is dominated by bands at ca. 1008, 1158, and 1520 cm−1 that now can be also a marker of lipids distribution in the cells. We showed that AXT accumulates in lipidic structures of endothelial cells in time-dependent manner that provides possibility to visualize e.g. endoplasmic reticulum, as well as nuclear envelope. As a non-toxic reporter, it has a potential in the future studies on e.g. nucleus membranes damage in live cells in a very short measuring time.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Adriana Adamczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30- 348, Krakow, Poland. .,Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland.
| |
Collapse
|
16
|
Abstract
State of the art of quantitative Vibrational Spectroscopic analysis of human blood serum is reviewed. Technical considerations for infrared absorption and Raman analysis are discussed. Quantitative analyses of Endogenous and Exogenous constituents are presented. The potential for clinical translation of spectroscopic serology is argued.
Analysis of bodily fluids using vibrational spectroscopy has attracted increasing attention in recent years. In particular, infrared spectroscopic screening of blood products, particularly blood serum, for disease diagnostics has been advanced considerably, attracting commercial interests. However, analyses requiring quantification of endogenous constituents or exogenous agents in blood are less well advanced. Recent advances towards this end are reviewed, focussing on infrared and Raman spectroscopic analyses of human blood serum. The importance of spectroscopic analysis in the native aqueous environment is highlighted, and the relative merits of infrared absorption versus Raman spectroscopy are considered, in this context. It is argued that Raman spectroscopic analysis is more suitable to quantitative analysis in liquid samples, and superior performance for quantification of high and low molecular weight components, is demonstrated. Applications for quantitation of viral loads, and therapeutic drug monitoring are also discussed.
Collapse
|
17
|
Perez-Guaita D, Chrabaszcz K, Malek K, Byrne HJ. Multimodal vibrational studies of drug uptake in vitro: Is the whole greater than the sum of their parts? JOURNAL OF BIOPHOTONICS 2020; 13:e202000264. [PMID: 32888394 DOI: 10.1002/jbio.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Herein, we investigated the use of multimodal Raman and infrared (IR) spectroscopic microscopy for the elucidation of drug uptake and subsequent cellular responses. Firstly, we compared different methods for the analysis of the combined data. Secondly, we evaluated whether the combined analysis provided enough benefits to justify the fusion of the data. A459 cells inoculated with doxorubicin (DOX) at different times were fixed and analysed using each technique. Raman spectroscopy provided high sensitivity to DOX and enabled an accurate estimation of the drug uptake at each time point, whereas IR provided a better insight into the resultant changes in the biochemical composition of the cell. In terms of benefits of data fusion, 2D correlation analysis allowed the study of the relationship between IR and Raman variables, whereas the joint analysis of IR and Raman enabled the correlation of the different variables to be monitored over time. In summary, the complementary nature of IR and Raman makes the combination of these vibrational techniques an appealing tool to follow drug kinetics and cellular response.
Collapse
Affiliation(s)
- David Perez-Guaita
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland
| | | | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland
| |
Collapse
|
18
|
Byrne HJ, Bonnier F, Efeoglu E, Moore C, McIntyre J. In vitro Label Free Raman Microspectroscopic Analysis to Monitor the Uptake, Fate and Impacts of Nanoparticle Based Materials. Front Bioeng Biotechnol 2020; 8:544311. [PMID: 33195114 PMCID: PMC7658377 DOI: 10.3389/fbioe.2020.544311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
The continued emergence of nanoscale materials for nanoparticle-based therapy, sensing and imaging, as well as their more general adoption in a broad range of industrial applications, has placed increasing demands on the ability to assess their interactions and impacts at a cellular and subcellular level, both in terms of potentially beneficial and detrimental effects. Notably, however, many such materials have been shown to interfere with conventional in vitro cellular assays that record only a single colorimetric end-point, challenging the ability to rapidly screen cytological responses. As an alternative, Raman microspectroscopy can spatially profile the biochemical content of cells, and any changes to it as a result of exogenous agents, such as toxicants or therapeutic agents, in a label free manner. In the confocal mode, analysis can be performed at a subcellular level. The technique has been employed to confirm the cellular uptake and subcellular localization of polystyrene nanoparticles (PSNPs), graphene and molybdenum disulfide micro/nano plates (MoS2), based on their respective characteristic spectroscopic signatures. In the case of PSNPs it was further employed to identify their local subcellular environment in endosomes, lysosomes and endoplasmic reticulum, while for MoS2 particles, it was employed to monitor subcellular degradation as a function of time. For amine functionalized PSNPs, the potential of Raman microspectroscopy to quantitatively characterize the dose and time dependent toxic responses has been explored, in a number of cell lines. Comparing the responses to those of poly (amidoamine) nanoscale polymeric dendrimers, differentiation of apoptotic and necrotic pathways based on the cellular spectroscopic responses was demonstrated. Drawing in particular from the experience of the authors, this paper details the progress to date in the development of applications of Raman microspectroscopy for in vitro, label free analysis of the uptake, fate and impacts of nanoparticle based materials, in vitro, and the prospects for the development of a routine, label free high content spectroscopic analysis technique.
Collapse
Affiliation(s)
- Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Franck Bonnier
- UFR Sciences Pharmaceutiques, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Esen Efeoglu
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Caroline Moore
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Jennifer McIntyre
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Ho LK, Daniel-Ivad M, Jeedigunta SP, Li J, Iliadi KG, Boulianne GL, Hurd TR, Smibert CA, Nodwell JR. Chemical entrapment and killing of insects by bacteria. Nat Commun 2020; 11:4608. [PMID: 32929085 PMCID: PMC7490686 DOI: 10.1038/s41467-020-18462-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria produce antibacterial and antifungal specialized metabolites. Many insects harbour actinobacteria on their bodies or in their nests and use these metabolites for protection. However, some actinobacteria produce metabolites that are toxic to insects and the evolutionary relevance of this toxicity is unknown. Here we explore chemical interactions between streptomycetes and the fruit fly Drosophila melanogaster. We find that many streptomycetes produce specialized metabolites that have potent larvicidal effects against the fly; larvae that ingest spores of these species die. The mechanism of toxicity is specific to the bacterium's chemical arsenal: cosmomycin D producing bacteria induce a cell death-like response in the larval digestive tract; avermectin producing bacteria induce paralysis. Furthermore, low concentrations of volatile terpenes like 2-methylisoborneol that are produced by streptomycetes attract fruit flies such that they preferentially deposit their eggs on contaminated food sources. The resulting larvae are killed during growth and development. The phenomenon of volatile-mediated attraction and specialized metabolite toxicity suggests that some streptomycetes pose an evolutionary risk to insects in nature.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Martin Daniel-Ivad
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Konstantin G Iliadi
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
20
|
A review on various analytical methods for determination of anthracyclines and their metabolites as anti–cancer chemotherapy drugs in different matrices over the last four decades. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Petit K, Suwalsky M, Colina JR, Contreras D, Aguilar LF, Jemiola-Rzeminska M, Strzalka K. Toxic effects of the anticancer drug epirubicin in vitro assayed in human erythrocytes. Toxicol In Vitro 2020; 68:104964. [PMID: 32800948 DOI: 10.1016/j.tiv.2020.104964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
Epirubicin is a cytotoxic drug used in the treatment of different types of cancer and increasing evidence suggests that its target is cell membranes. In order to gain insight on its toxic effects, intact red blood cells (RBC), human erythrocyte membranes and molecular models were used. The latter consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes found mainly in the outer and inner monolayers of the human erythrocyte membrane, respectively. The results obtained by X-ray diffraction displayed that epirubicin induced structural perturbations in multilayers of DMPC. Differential scanning calorimetry (DSC) showed that epirubicin disturbed the thermotropic behavior of both DMPC and DMPE vesicles, whereas fluorescence spectroscopy demonstrated alterations in the fluidity of DMPC vesicles and the erythrocyte membrane. Scanning electron microscopy (SEM) revealed that epirubicin changed the normal discoid form of RBC to echinocytes and stomatocytes. Electron paramagnetic resonance (EPR) disclosed that this drug induced conformational changes in the erythrocyte membrane proteins. These findings demonstrate that epirubicin interacts with lipids and proteins of the human erythrocyte membrane, effects that might compromise the integrity and function of cell membranes. This is the first time that its toxic effects on the human erythrocyte membrane have been described.
Collapse
Affiliation(s)
- Karla Petit
- Faculty of Chemical Sciences, University of Concepción, Concepción, Chile
| | - Mario Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Concepción, Chile.
| | - José R Colina
- Faculty of Chemical Sciences, University of Concepción, Concepción, Chile
| | - David Contreras
- Faculty of Chemical Sciences, University of Concepción, Concepción, Chile; Center of Biotecnology, University of Concepción, Concepción, Chile
| | - Luis F Aguilar
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
22
|
Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960094. [PMID: 31999078 DOI: 10.1002/jbio.201960094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.
Collapse
Affiliation(s)
- Maciej Roman
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz P Wrobel
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Czeslawa Paluszkiewicz
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech M Kwiatek
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
23
|
Makki AA, Bonnier F, Respaud R, Chtara F, Tfayli A, Tauber C, Bertrand D, Byrne HJ, Mohammed E, Chourpa I. Qualitative and quantitative analysis of therapeutic solutions using Raman and infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:97-108. [PMID: 30954803 DOI: 10.1016/j.saa.2019.03.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Anticancer drugs are prescribed and administrated to an increasing number of patients on a daily basis. As a consequence, a number of concerns have been raised about the patient health and safety in the case that the drugs administered are not at the required concentration or even worse not the correct ones. Quality control of therapeutic solutions has therefore been extensively implemented in hospital environments, in order to avoid any failure in the intense workflow faced by administering pharmacists. In the present study, infrared (IR) and Raman spectroscopy have been employed for the analysis of 3 commercially available therapeutic solutions TEVA®, MYLAN®, CERUBIDINE®, respectively containing doxorubicin, epirubicin and daunorubicin. They perfectly illustrate the analytical difficulties encountered, as these 3 chemotherapeutic drugs are isomers, hardly distinguishable with conventional approaches such as UV/VIS spectrometry. Any analytical failure to identify these molecules can lead to delays in patient treatment. While Partial Least Squares Regression analysis demonstrates that both Raman and IR can deliver satisfactory quantitative analysis in the clinical range, with respective Root Mean Square Error of Cross Validation (RMSECV) between 0.0127 - 0.0220 g·L-1 and 0.0573 - 0.0759 g·L-1, the identification rate between the 2 techniques differs substantially. Indeed, Principal Component Analysis - Factorial Discriminant Analysis (PCA-FDA) highlights that, depending on the data preprocessing applied to Raman spectra, the discrimination between the 3 drugs is decreased, with in some cases specificity and sensitivity below 50%. However, IR analysis displays encouraging results with an overall specificity and sensitivity between 99 and 100%, suggesting that reliable validation of the therapeutic solution for administration to patients can be achieved. IR and Raman spectroscopy could assist and support quality control of chemotherapeutic solutions prepared in personalised concentrations for each patient. The effective and reliable characterisation of therapeutic solutions could have a lot to offer to improve current practices in a near future.
Collapse
Affiliation(s)
- Alaa A Makki
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France; Department of Pharmacognosy, Faculty of Pharmacy, University of Gezira, Sudan
| | - Franck Bonnier
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France.
| | - Renaud Respaud
- Université François-Rabelais de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France
| | - Fatma Chtara
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Ali Tfayli
- U-Psud, University of Paris-Saclay, Lip (Sys)2, EA7357, UFR-Pharmacy, Châtenay-Malabry, France
| | - Clovis Tauber
- UMR U1253 iBrain, Université de Tours, Inserm, 37032 Tours, France
| | | | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Elhadi Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Gezira, Sudan
| | - Igor Chourpa
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
24
|
Roman M, Wrobel TP, Panek A, Efeoglu E, Wiltowska-Zuber J, Paluszkiewicz C, Byrne HJ, Kwiatek WM. Exploring subcellular responses of prostate cancer cells to X-ray exposure by Raman mapping. Sci Rep 2019; 9:8715. [PMID: 31213635 PMCID: PMC6581960 DOI: 10.1038/s41598-019-45179-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding the response of cancer cells to ionising radiation is a crucial step in modern radiotherapy. Raman microspectroscopy, together with Partial Least Squares Regression (PLSR) analysis has been shown to be a powerful tool for monitoring biochemical changes of irradiated cells on the subcellular level. However, to date, the majority of Raman studies have been performed using a single spectrum per cell, giving a limited view of the total biochemical response of the cell. In the current study, Raman mapping of the whole cell area was undertaken to ensure a more comprehensive understanding of the changes induced by X-ray radiation. On the basis of the collected Raman spectral maps, PLSR models were constructed to elucidate the time-dependent evolution of chemical changes induced in cells by irradiation, and the performance of PLSR models based on whole cell averages as compared to those based on average Raman spectra of cytoplasm and nuclear region. On the other hand, prediction of X-ray doses for individual cellular components showed that cytoplasmic and nuclear regions should be analysed separately. Finally, the advantage of the mapping technique over single point measurements was verified by a comparison of the corresponding PLSR models.
Collapse
Affiliation(s)
- Maciej Roman
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland.
| | - Tomasz P Wrobel
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Esen Efeoglu
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin, 8, Ireland
| | | | | | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin, 8, Ireland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| |
Collapse
|
25
|
Byrne HJ, Bonnier F, Farhane Z. Two-dimensional correlation analysis of Raman microspectroscopy of subcellular interactions of drugs in vitro. JOURNAL OF BIOPHOTONICS 2019; 12:e201800328. [PMID: 30414254 DOI: 10.1002/jbio.201800328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) correlation analysis is explored to data mine the time evolution of the characteristic Raman microspectroscopic signatures of the subcellular responses of the nucleoli of human lung cancer cells to the uptake of doxorubicin. A simulated dataset of experimental control spectra, perturbed with systematically time-dependent spectral changes, constituted by a short-term response which represents the initial binding of the drug in the nucleolus, followed by a longer term response of the organelle metabolism, is used to validate the analysis protocol. Applying 2D correlation analysis, the in phase, synchronous correlation coefficients are seen to contain contributions of both response profiles, whereas they can be independently extracted from the out of phase, asynchronous correlation coefficients. The methodology is applied to experimental data of the uptake of doxorubicin in human lung cell lines to differentiate the signatures of chemical binding and subsequent cellular response.
Collapse
Affiliation(s)
- Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Franck Bonnier
- Université François-Rabelais de Tours, Faculty of Pharmacy, EA 6295 Nanomédicaments et Nanosondes, Tours, France
| | - Zeineb Farhane
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics and Clinical & Optometric Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
26
|
Carvalho SM, Mansur AA, Capanema NS, Carvalho IC, Chagas P, de Oliveira LCA, Mansur HS. Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Yang Z, Mei J, Liu Z, Huang G, Huang G, Han L. Visualization and Semiquantitative Study of the Distribution of Major Components in Wheat Straw in Mesoscopic Scale using Fourier Transform Infrared Microspectroscopic Imaging. Anal Chem 2018; 90:7332-7340. [PMID: 29772906 DOI: 10.1021/acs.analchem.8b00614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the biochemical heterogeneity of plant tissue linked to crop straw anatomy is attractive to plant researchers and researchers in the field of biomass refinery. This study provides an in situ analysis and semiquantitative visualization of major components distribution in internodal transverse sections of wheat straw based on Fourier transform infrared (FTIR) microspectroscopic imaging, with a fast non-negativity-constrained least squares (fast NNLS) fitting. This paper investigates changes in biochemical components of tissue during stages of elongation, booting, heading, flowering, grain-filling, milk-ripening, dough, and full-ripening. Visualization analysis was carried out with reference spectra for five components (microcrystalline cellulose, xylan, lignin, pectin, and starch) of wheat straw. Our result showed that (a) the cellulose and lignin distribution is consistent with that from tissue-dyeing with safranin O-fast green and (b) the distribution of cellulose, lignin, and starch is consistent with chemical images for characteristic wavelength at 1432, 1507, and 987 cm-1, respectively, showing no interference from the other components analyzed. With the validation from biochemical images using characteristic wavelength and tissue-dyeing techniques, further semiquantitative analysis in local tissues based on fast NNLS was carried out, and the result showed that (a) the contents of cellulose in various tissues are very different, with most in parenchyma tissue and least in the epidermis and (b) during plant development, the fluctuation of each component in tissues follows nearly the same trend, especially within vascular bundles and parenchyma tissue. Thus, FTIR microspectroscopic imaging combined with suitable chemometric methods can be successfully applied to study chemical distributions within the internodes transverse sections of wheat straw, providing semiquantitative chemical information.
Collapse
Affiliation(s)
- Zengling Yang
- College of Engineering , China Agricultural University , Beijing 100083 , P.R. China.,Key Laboratory of Clean Production and Utilization of Renewable Energy , The Ministry of Agriculture , Beijing 100083 , P.R.China
| | - Jiaqi Mei
- College of Engineering , China Agricultural University , Beijing 100083 , P.R. China
| | - Zhiqiang Liu
- College of Engineering , China Agricultural University , Beijing 100083 , P.R. China
| | - Guangqun Huang
- College of Engineering , China Agricultural University , Beijing 100083 , P.R. China
| | - Guan Huang
- College of Engineering , China Agricultural University , Beijing 100083 , P.R. China
| | - Lujia Han
- College of Engineering , China Agricultural University , Beijing 100083 , P.R. China
| |
Collapse
|
28
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MDF, Cunha ADS, Mansur HS. Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjug Chem 2018; 29:1973-2000. [DOI: 10.1021/acs.bioconjchem.8b00208] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|