1
|
Farka Z, Vytisková K, Makhneva E, Zikmundová E, Holub D, Buday J, Prochazka D, Novotný K, Skládal P, Pořízka P, Kaiser J. Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles. Anal Chim Acta 2024; 1299:342418. [PMID: 38499415 DOI: 10.1016/j.aca.2024.342418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Karolína Vytisková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Zikmundová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Daniel Holub
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jakub Buday
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - David Prochazka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Karel Novotný
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
2
|
Singh Tanwar LK, Sharma S, Ghosh KK. Spectroscopic detection of Hg2+ in water samples using fluorescent carbon quantum dots as sensing probe. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-183967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mercury (Hg2+) is remarked as toxic and hazardous element to global environment. Here, carbon quantum dots (CQDs) were synthesized by simple microwave assisted technique for Hg2+ detection in water samples via. fluorescence quenching and FT-IR spectroscopic approach. The morphology and chemical structure of synthesized CQDs was investigated by TEM, FT-IR, 13C-NMR, fluorescence and UV-vis spectroscopic technique. The resultant CQDs bears spherical morphology with an average size of 2–4 nm. The binding parameters, as Stern-Volmer quenching constant (Ksv) and binding constant for CQDs-Hg system was investigated by fluorescence method, whereas UV-vis techniques was employed for determination of thermodynamic parameters, as Gibb’s free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) at three different temperature (295, 298 and 305 K). Moreover, selectivity assay for Hg2+ detection has been studied in presence of other metal ions by FT-IR as well as fluorescence spectroscopy. Analytical assay was also successfully applied for Hg2+ in spiked water samples collected from different areas of Chhattisgarh, with 98–99 recovery %. The detection of Hg2+ has been demonstrated in the range of 0 to 5.0μM with 3.25 nM detection limit. The present method is found to be simple, highly sensitive and selective for sensing of Hg2+ in aquatic environmental samples using CQDs as sensing probe.
Collapse
Affiliation(s)
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| |
Collapse
|
3
|
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021; 276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chaing Rai 57100, Thailand
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia.
| |
Collapse
|
4
|
Kostiv U, Farka Z, Mickert MJ, Gorris HH, Velychkivska N, Pop-Georgievski O, Pastucha M, Odstrčilíková E, Skládal P, Horák D. Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules 2020; 21:4502-4513. [PMID: 32392042 DOI: 10.1021/acs.biomac.0c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) display highly beneficial photophysical features for background-free bioimaging and bioanalysis; however, they are instable in high ionic strength buffers, have no functional groups, and are nonspecifically interacting. Here, we have prepared NIR-excitable UCNPs that are long-term colloidally stable in buffered media and possess functional groups. Heterobifunctional poly(ethylene glycol) (PEG) linkers bearing neridronate and alkyne or maleimide were attached to UCNPs via a ligand exchange. Streptavidin (SA)-conjugates were prepared by click reaction of UCNP@PEG-alkyne and SA-azide. Antihuman serum albumin pAbF antibody was modified with azide groups and conjugated to UCNP@PEG-alkyne via click reaction; alternatively, the antibody, after mild reduction of its disulfide bonds, was conjugated to UCNP@PEG-maleimide. We employed these nanoconjugates as labels for an upconversion-linked immunosorbent assay. SA-based labels achieved the lowest LOD of 0.17 ng/mL for the target albumin, which was superior compared to a fluorescence immunoassay (LOD 0.59 ng/mL) or an enzyme-linked immunoassay (LOD 0.56 ng/mL).
Collapse
Affiliation(s)
- Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Matthias J Mickert
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Nadiia Velychkivska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eliška Odstrčilíková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
5
|
Wang X, Wang Y, Wang Y, Chen Q, Liu X. Nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay for ochratoxin a detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117617. [PMID: 31605970 DOI: 10.1016/j.saa.2019.117617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/09/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA) is a kind of mycotoxin that seriously harms the health of humans and animals. In this study, a nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay (Nb-AP-mediated PT-FIA) was developed for detecting OTA. Based on the constructed phosphate-triggered fluorescence sensing system for Nb-AP and the optimal working conditions, the Nb-AP-mediated PT-FIA has a half maximal inhibition concentration (IC50) of 0.46 ng/mL, a limit of detection (IC10) of 0.12 ng/mL, and a linear range (IC20-80) of 0.2-1.26 ng/mL, respectively. The recovery experiment indicated acceptable accuracy and precision of the Nb-AP-mediated PT-FIA, and the results were validated by high performance liquid chromatography with fluorescence detector. Thus this proposed method is applicable to sensitive, rapid, and low-cost detection of OTA and other toxic analytes with low molecular weight in food and environment.
Collapse
Affiliation(s)
- Xuerou Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Yidan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| |
Collapse
|
6
|
Smirnova TD, Shtykov SN, Zhelobitskaya EA. Energy transfer in liquid and solid nanoobjects: application in luminescent analysis. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-9981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Radiationless resonance electronic excitation energy transfer (ET) is a fundamental physical phenomenon in luminescence spectroscopy playing an important role in natural processes, especially in photosynthesis and biochemistry. Besides, it is widely used in photooptics, optoelectronics, and protein chemistry, coordination chemistry of transition metals and lanthanides as well as in luminescent analysis. ET involves the transfer of electronic energy from a donor (D) (molecules or particles) which is initially excited, to an acceptor (A) at the ground state to emit it later. Fluorescence or phosphorescence of the acceptor that occurs during ET is known as sensitized. There do many kinds of ET exist but in all cases along with other factors the rate and efficiency of ET in common solvents depends to a large extent on the distance between the donor and the acceptor. This dependency greatly limits the efficiency of ET and, correspondingly, does not allow the determination of analytes in highly diluted (10–9–10–15 M) solutions. To solve the problem of distance-effect, the effects of concentrating and bring close together the donor and acceptor in surfactant micelles (liquid nanosystems) or sorption on solid nanoparticles are used. Various approaches to promote the efficiency of ET for improvement determination selectivity and sensitivity using liquid and solid nanoobjects is reviewed and analyzed.
Collapse
|
7
|
Zhang H, Zhang T, Wang Y. Mechanistic understanding and binding analysis of two-dimensional MoS 2 nanosheets with human serum albumin by the biochemical and biophysical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:18-25. [PMID: 30502580 DOI: 10.1016/j.saa.2018.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
With the advent of molybdenum disulfide nanosheets (MoS2 NSs) for biological applications, their complex interactions with human serum albumin (HSA) need to be understood in great detail for the molecular mechanisms of protein structure and activity. It was observed that MoS2 NSs quench the intrinsic fluorescence of HSA as a consequence of ground-state complex formation by the electron transfer, van der Waals, and hydrophobic forces. The presence of MoS2 NSs partly altered the conformation of HSA and destroyed the binding domain of HSA with bilirubin. In addition, MoS2 NSs can decrease the rate of the formation of beta sheet structures of HSA, reduce the non-enzymatic glycosylation, and increase the esterase-like activity of HSA. We hope that the present study will be helpful to understand the fundamental interactions of the two-dimensional materials with various biomacromolecules in human blood.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
8
|
Cao L, Wang P, Chen L, Wu Y, Di J. A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Adv 2019; 9:15307-15313. [PMID: 35514836 PMCID: PMC9064256 DOI: 10.1039/c9ra02088h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
This work reports the first construction of the ternary layers of ITO/PbS/SiO2/AuNPs nanostructure for development of photoelectrochemical (PEC) glucose sensor. Herein, the thioglycolic acid-capped PbS quantum dots was employed as a PEC active probe, which is very sensitive to oxygen. The small gold nanoparticles (AuNPs) were act as nanozyme (mimic enzyme of glucose oxidase) to catalytically oxidize glucose in the presence of oxygen, meanwhile consumed oxygen and then resulted in the decrease of cathodic photocurrent. The insertion layer of SiO2 nanoparticles between PbS and AuNPs could reduce efficiently the base current due to its low electroconductivity, which improved the detection limit. The proposed PEC sensor exhibited high sensitivity and gold selectivity towards glucose. The linear response of glucose concentrations ranged from 1.0 μM to 1.0 mM with detection limit of 0.46 μM (S/N = 3). The results suggest the potential of design and development of numerous nanozyme-based PEC biosensors with the advantage of the simplicity, stability, and efficiency. This work reports the first construction of the ternary layers of ITO/PbS/SiO2/AuNPs nanostructure for development of photoelectrochemical (PEC) glucose sensor.![]()
Collapse
Affiliation(s)
- Ling Cao
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Panpan Wang
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Li Chen
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Ying Wu
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Junwei Di
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
9
|
Yu Y, Yang Y, Ding J, Meng S, Li C, Yin X. Design of a Biocompatible and Ratiometric Fluorescent probe for the Capture, Detection, Release, and Reculture of Rare Number CTCs. Anal Chem 2018; 90:13290-13298. [DOI: 10.1021/acs.analchem.8b02625] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Yuan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Jinhua Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Si Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| |
Collapse
|
10
|
Spectroscopic studies on in vitro molecular interaction of highly fluorescent carbon dots with different serum albumins. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12:5421-5431. [PMID: 28814860 PMCID: PMC5546783 DOI: 10.2147/ijn.s138624] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.
Collapse
Affiliation(s)
- Cristian T Matea
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor"
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Physiology, University of Medicine and Pharmacy, "Iuliu Hatieganu"
| | - Flaviu Tabaran
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine
| | - Teodora Pop
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Gastroenterology
| | - Ofelia Mosteanu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Gastroenterology
| | - Cosmin Puia
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Cornel Iancu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
12
|
Hovhannisyan VA, Bazukyan IL, Gasparyan VK. Application of silver nanoparticles and CdSe quantum dots sensitized with of C-like lectin for detection of St. aureus. Comparison of various approaches. Talanta 2017; 175:366-369. [PMID: 28842004 DOI: 10.1016/j.talanta.2017.07.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
C-type lectin from hen egg shell as a recognition ligand for detection of St. aureus was applied. Three approaches for detection of bacteria were used and the sensitivities of the assays were compared. Two of them included spherical and anisotropic silver nanoparticles sensitized by lectin. In these cases the optical changes as a result of interaction of sensitized nanoparticles with bacteria were measured. In the third approach hybrid system of CdSe quantum dots-anisotropic silver nanoparticles sensitized by lectin was applied. Here fluorescent changes as a result of resonance energy transfer between nanoparticles as consequence of their interaction with bacteria were measured. The data demonstrate that assays with spherical silver nanoparticles permit to detect St. aureus in the range of 6 × 104/mL-2 × 107/mL, anisotropic silver nanoparticles in the range of 2 × 105/mL-1 × 108/mL, CdSe-Ag hybrid system in the range of 6 × 103/mL-2 × 107/mL. The data demonstrate that hybrid system CdSe-Ag with resonance energy transfer provides the best sensitivity.
Collapse
Affiliation(s)
- Varduhi A Hovhannisyan
- Laboratory of Medical Biotechnology, Institute of Biochemistry, National Academy of Sciences, Yerevan 0014, Armenia
| | | | - Vardan K Gasparyan
- Laboratory of Medical Biotechnology, Institute of Biochemistry, National Academy of Sciences, Yerevan 0014, Armenia.
| |
Collapse
|
13
|
Fakhri A, Tahami S, Naji M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 169:21-26. [PMID: 28254569 DOI: 10.1016/j.jphotobiol.2017.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Nano-medicine is a breakthrough discovery in the healthcare sector. Doxycycline is a new generation antibiotic which is proved to be a boon in the treatment of patients with complicated skin infections. We have tried to explore the benefits of synthesized bimetallic silver-gold nanoparticles in combination with new generation antibiotic for burn infections. The bimetallic nanoparticles synthesized by core-shell method were characterized using scanning electron microscopy equipped with an energy dispersive spectrometer, transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The calculated average particle sizes of the Ag-Au NPs were found to be 27.5nm. The Ag-Au core-shell BNPs show a characteristic Plasmon peak at 525nm which is broad and red shifted. The synergistic antimicrobial activity of doxycycline conjugated bimetallic nanoparticles was investigated against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Micrococcus luteus. This combined therapeutic agent showed greater bactericidal activity. Synergy of antibiotic with bimetallic nanoparticles is quite promising for significant application in burn healing therapy. The mechanism of the antibacterial activity was studied through the formation of reactive oxygen species (ROS) that was later suppressed with antioxidant to establish correlation with the Ag-Au NPs antimicrobial activity. Ag-Au NPs showed effective antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines.
Collapse
Affiliation(s)
- Ali Fakhri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shiva Tahami
- Department of Biology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mahsa Naji
- Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|