1
|
Jayachandiran K, Esha S, Savitha Lakshmi M, Mahalakshmi S, Arockiasamy S. Synthesis and structural insights of bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato) nickel (II) complex through DFT and docking investigations. Sci Rep 2025; 15:1751. [PMID: 39799238 PMCID: PMC11724891 DOI: 10.1038/s41598-025-85465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties. The ScXRD showed a square planar geometry, and monoclinic crystal system with a space group P21/n. The TG analysis revealed its thermal durability pre and post-melting up to 225 oC with a weight loss of only 2%. The optimized molecular structure, energy gap between HOMO and LUMO, and intermolecular interactions were studied by computational methods. The microbial activity evaluation showed significant anti-bacterial activity against E. coli and S. aureus when the concentration exceeded 40 µg/mL, and a prominent anti-fungal activity over C. albicans and C. tropicalis above 30 µg/mL. The values of minimum inhibitory concentration (MIC) for bacteria (MIB) and fungi (MIF) implied its potential to inhibit the growth of microbes. Docking studies revealed that the molecule binds well with proteins such as PDB: 2W9H for Dihydrofolate Reductase of S.aureus as shown by its binding energy of -8.62 kcal.mol- 1.
Collapse
Affiliation(s)
- K Jayachandiran
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - Sv Esha
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - M Savitha Lakshmi
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - S Mahalakshmi
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India
| | - S Arockiasamy
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
| |
Collapse
|
2
|
Pradhan S, Mishra DK, Gurung P, Chettri A, Singha UK, Dutta T, Sinha B. An In-Silico Drug Designing Approach Attempted on a Newly Synthesized Co(II) Complex along with its Other Biological Activities: A Combined Investigation of both Experimental and Theoretical Aspects. J Fluoresc 2024:10.1007/s10895-024-03852-0. [PMID: 39031237 DOI: 10.1007/s10895-024-03852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
A new Co (II) complex incorporating a novel Schiff base ligand acquired from the condensation of 3,3'-Methylenedianiline and 2-Hydroxy-5-bromobenzaldehyde was synthesized and characterized. The synthesized complex was air and moisture stable, monomeric, and non-electrolytic in nature. Based on physical and spectral studies, tetrahedral conformation was ascribed to the synthesized Co (II) complex.Density Functional Theory (DFT) was used to analysis different electronic parameters of the optimized structure of Co(II) complex to reveal its stability.Using different analytic and spectroscopic techniques, the new Co (II) complex was established to interact with DNA quite effectively and works as an efficient metallo intercalators. The synthesized complex was discovered to cleave DNA significantly, so it can be inferred that the complex will inhibit the growth of pathogens. Molecular docking was performed to check the binding affinity of the cobalt complex with different receptors, responsible for different diseases. Proteins like progesterone receptor and induced myeloid leukemia cell differentiation Mcl-1 protein showed high binding affinity with this complex, and hence the complex might have some implications for inhibition of progesterone hormones in biological systems. Biological activity of the Co (II) complex was also predicted through computational analysis with SwissADME.Using strains of Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, and Staphylococcus aureus, an in vitro antibacterial activity of the ligand and Co (II) complex was carried out. This activity was further validated by a molecular docking investigation.
Collapse
Affiliation(s)
- Sudarshan Pradhan
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Dipu Kumar Mishra
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Pritika Gurung
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Anmol Chettri
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Uttam Kumar Singha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
| |
Collapse
|
3
|
Polymer complexes: LXXX—characterization, DNA cleavage properties, antimicrobial activity and molecular docking studies of transition metal complexes of Schiff base. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Luo H, Liang Y, Zhang H, Liu Y, Xiao Q, Huang S. Comparison on binding interactions of quercetin and its metal complexes with calf thymus DNA by spectroscopic techniques and viscosity measurement. J Mol Recognit 2021; 34:e2933. [PMID: 34432328 DOI: 10.1002/jmr.2933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Quercetin (Qu) and its metal complexes have received great attention during the last years, due to their good antioxidant, antibacterial, and anticancer activities. In this contribution, binding interactions of Qu and Qu-metal complexes with calf thymus DNA (ctDNA) were investigated and compared systematically by using spectroscopic techniques and viscosity measurement. UV-vis absorption spectra of ctDNA-compound systems showed obvious hypochromic effect. Relative viscosity and melting temperature of ctDNA increased after the addition of Qu and Qu-metal complexes, and the change tendency is Qu-Cr(III) > Qu-Mn(II) > Qu-Zn(II) > Qu-Cu(II) > Qu. Fluorescence competition experiments show that hydrogen bonds and van der Waals interaction play an important role in the intercalative binding of Qu and Qu-metal complexes with ctDNA. Qu and Qu-metal complexes could unwind the right-handed B-form helicity of ctDNA and further affect its base pair stacking. Space steric hindrance might be responsible for the differences in the intercalative binding between ctDNA and different Qu-metal complexes. These results provide new information for the molecular understanding of binding interactions of Qu-metal complexes with DNA and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Yu Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Huiying Zhang
- College of Chemistry and Biological Engineering, Hechi University, Hechi, China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, China
| |
Collapse
|
5
|
Choroba K, Machura B, Szlapa-Kula A, Malecki JG, Raposo L, Roma-Rodrigues C, Cordeiro S, Baptista PV, Fernandes AR. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2':6',2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur J Med Chem 2021; 218:113404. [PMID: 33823390 DOI: 10.1016/j.ejmech.2021.113404] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Cancer is the second leading cause of death worldwide. Cisplatin has challenged cancer treatment; however, resistance and side effects hamper its use. New agents displaying improved activity and more reduced side effects relative to cisplatin are needed. In this work we present the synthesis, characterization and biological activities of three complexes with quinoline-substituted 2,2':6',2″-terpyridine ligand: [Pt(4'-(2-quin)-terpy)Cl](SO3CF3) (1), [Au(4'-(2-quin)-terpy)Cl](PF6)2·CH3CN (2) and [Cu(4'-(2-quin)-terpy)Cl](PF6) (3). The three complexes displayed a high antiproliferative activity in ovarian carcinoma cell line (A2780) and even more noticeable in a colorectal carcinoma cell line (HCT116) following the order 3 > 2 > 1. The complexes IC50 are at least 20 × lower than the IC50 displayed by cisplatin (15.4 μM) in HCT116 cell line while displaying at the same time, much reduced cytotoxicity in a normal dermal fibroblast culture. These cytotoxic activities seem to be correlated with the inclination angles of 2-quin unit to the central pyridine. Interestingly, all complexes can interact with calf-thymus DNA (CT-DNA) in vitro via different mechanisms, although intercalation seems to be the preferred mechanism at least for 2 and 3 at higher concentrations of DNA. Moreover, circular dichroism (CD) data seems to indicate that complex 3, more planar, induces a high destabilization of the DNA double helix (shift from B-form to Z-form). Higher the deviation from planar, the lower the cytotoxicity displayed by the complexes. Cellular uptake may be also responsible for the different cytotoxicity exhibited by complexes with 3 > 2 >1. Complex 2 seems to enter cells more passively while complex 1 and 3 might enter cells via energy-dependent and -independent mechanisms. Complexes 1-3 were shown to induce ROS are associated with the increased apoptosis and autophagy. Moreover, all complexes dissipate the mitochondrial membrane potential leading to an increased BAX/BCL-2 ratio that triggered apoptosis. Complexes 2 and 3 were also shown to exhibit an anti-angiogenic effect by significantly reduce the number of newly formed blood vessel in a CAM model with no toxicity in this in vivo model. Our results seem to suggest that the increased cytotoxicity of complex 3 in HCT116 cells and its potential interest for further translation to pre-clinical mice xenografts might be associated with: 1) higher % of internalization of HCT116 cells via energy-dependent and -independent mechanisms; 2) ability to intercalate DNA and due to its planarity induced higher destabilization of DNA; 3) induce intracellular ROS that trigger apoptosis and autophagy; 4) low toxicity in an in vivo model of CAM; 5) potential anti-angiogenic effect.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Jan G Malecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Luis Raposo
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Nickel(II), copper(II) and zinc(II) complexes containing symmetrical Tetradentate Schiff base ligand derived from 3,5-diiodosalicylaldehyde: Synthesis, characterization, crystal structure and antimicrobial activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02207-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
8
|
|
9
|
Dezhampanah H, Firouzi R, Moradi Shoeili Z, Binazir R. Intermolecular investigation on interaction of two ternary copper(II) Schiff base complexes with bovine serum albumin. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Elshami FI, Ramadan AEM, Ibrahim MM, El‐Mehasseb IM, Al‐Juaid S, Shaban SY. Metformin Containing Nickel (II) Complexes: Synthesis, Structural Characterization, Binding and Kinetic Interactions with BSA, Antibacterial and in‐vitro Cytotoxicity Studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fawzya I. Elshami
- Department of Chemistry, Faculty of Science, KafrelsheikhUniversity Kafrelsheikh 33516 Egypt
| | | | - Mohamed M. Ibrahim
- Department of Chemistry, Faculty of Science, KafrelsheikhUniversity Kafrelsheikh 33516 Egypt
- Department of Chemistry, Faculty of ScienceTaif University Taif Saudi Arabia
| | - Ibrahim M. El‐Mehasseb
- Department of Chemistry, Faculty of Science, KafrelsheikhUniversity Kafrelsheikh 33516 Egypt
| | - Salih Al‐Juaid
- Department of Chemistry, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
| | - Shaban Y. Shaban
- Department of Chemistry, Faculty of Science, KafrelsheikhUniversity Kafrelsheikh 33516 Egypt
| |
Collapse
|
11
|
Rada JP, Bastos BSM, Anselmino L, Franco CHJ, Lanznaster M, Diniz R, Fernández CO, Menacho-Márquez M, Percebom AM, Rey NA. Binucleating Hydrazonic Ligands and Their μ-Hydroxodicopper(II) Complexes as Promising Structural Motifs for Enhanced Antitumor Activity. Inorg Chem 2019; 58:8800-8819. [DOI: 10.1021/acs.inorgchem.9b01195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jesica Paola Rada
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Beatriz S. M. Bastos
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Luciano Anselmino
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | - Renata Diniz
- Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Mauricio Menacho-Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Ana Maria Percebom
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Nicolás A. Rey
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| |
Collapse
|
12
|
Abyar F, Tabrizi L. Experimental and theoretical investigations of novel oxidovanadium(IV) juglone complex: DNA/HSA interaction and cytotoxic activity. J Biomol Struct Dyn 2019; 38:474-487. [PMID: 30831056 DOI: 10.1080/07391102.2019.1580221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new oxidovanadium(IV) complex VO(L)(Jug) (HL = 5-methoxy-1,3-bis (1-methyl-1H-benzo[d]imidazol-2-yl)benzene, Jug = juglone) was synthesized and characterized. Interactions of the V(IV) complex with calf thymus DNA (CT DNA) and human serum albumin were studied using different techniques such as UV-vis and fluorescence emission spectroscopy. The experimental results were confirmed by the molecular docking study. The oxidovanadium(IV) complex can efficiently cleave pUC19 DNA in the presence of Hydrogen peroxide. Also, the in vitro cytotoxicity properties of the oxidovanadium(IV) complex was evaluated against MCF-7, HPG-2 and HT-29 cancer cell lines and HEK293 non-malignant fibroblasts were evaluated and compared with free ligands, VOSO4 and cisplatin as reference drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | - Leila Tabrizi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
13
|
Synthesis, crystal structure, experimental and theoretical studies of tetradentate N2O2 Schiff base ligand and its Ni(II) and Pd(II) complexes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-01583-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Structural and SAXS analysis of protein folding/unfolding with cationic single chain metallosurfactants. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Kaur G, Garg P, Kaur B, Chaudhary GR, Kumar S, Dilbaghi N, Hassan PA, Gawali SL. Cationic double chained metallosurfactants: synthesis, aggregation, cytotoxicity, antimicrobial activity and their impact on the structure of bovine serum albumin. SOFT MATTER 2018; 14:5306-5318. [PMID: 29904765 DOI: 10.1039/c8sm00535d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bovine serum albumin (BSA) is one of the most copious and significant blood proteins with dynamic structure. The understanding of the structural functionality of BSA and its interaction with metal ions is desired for various biological functions. Herein, three different metallosurfactants containing different transition metals and the same hydrophobic tail were engaged to investigate the structural transition of BSA. The metallosurfactants have been prepared by a combination of metal ions (M = Fe, Co and Ni) with cetylpyridinium chloride surfactant via the ligand insertion method and were characterized by elemental, FTIR, 1H-NMR, and thermogravimetric analysis (TGA). The obtained results reveal that insertion of a metal ion perturbs the aggregation behavior of the surfactant. Incorporation of a metal-ion has been found to decrease the CMC value of the surfactant, which has been supported by conductivity, surface tension and small angle X-ray scattering (SAXS). These metallosurfactants were employed to study the interaction and binding mechanism of BSA under physiological conditions. SDS-PAGE analysis points out a weak effect of metallosurfactants on the primary structure of BSA, whereas CD spectra implied a significant change in secondary structure with the decreased α-helical content of BSA. Fluorescence spectroscopy indicates the effect of metallosurfactants on the tertiary structure of BSA, whereas absorption spectra demonstrated static quenching with a blue shift in the presence of metallosurfactants. Moreover, unfolding of BSA in the presence of metallosurfactants has also been confirmed by SAXS studies. The overall results indicate that insertion of the metal ion into the framework of the surfactant structure enhances its protein binding/folding/unfolding abilities, which would be helpful in clinical as well as in life sciences.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ren G, Li J, Zhou J, Yan B, Ren Y, Sun X, Ma H. Enhanced antifungal activities of four Zn(II) complexes based on uniconazole. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Guo‐Yu Ren
- School of Chemical EngineeringNorthwest University/ Shaanxi Key Laboratory of Physical‐Inorganic Chemistry Xi’an Shaanxi 710069 China
- School of Chemistry and Chemical EngineeringYulin University/ Laboratory of Low Metamorphic Coal Clean Utilization Yulin Shaanxi 719000 China
| | - Jie Li
- School of Chemical EngineeringNorthwest University/ Shaanxi Key Laboratory of Physical‐Inorganic Chemistry Xi’an Shaanxi 710069 China
| | - Jin‐Hua Zhou
- School of Chemical EngineeringNorthwest University/ Shaanxi Key Laboratory of Physical‐Inorganic Chemistry Xi’an Shaanxi 710069 China
| | - Biao Yan
- School of Chemistry and Chemical EngineeringYulin University/ Laboratory of Low Metamorphic Coal Clean Utilization Yulin Shaanxi 719000 China
| | - Ying‐Hui Ren
- School of Chemical EngineeringNorthwest University/ Shaanxi Key Laboratory of Physical‐Inorganic Chemistry Xi’an Shaanxi 710069 China
| | - Xiao‐Hong Sun
- School of Chemical EngineeringNorthwest University/ Shaanxi Key Laboratory of Physical‐Inorganic Chemistry Xi’an Shaanxi 710069 China
| | - Hai‐Xia Ma
- School of Chemical EngineeringNorthwest University/ Shaanxi Key Laboratory of Physical‐Inorganic Chemistry Xi’an Shaanxi 710069 China
| |
Collapse
|
17
|
Kianfar AH, Tavanapour S, Eskandari K, Azarian MH, Mahmood WAK, Bagheri M. Experimental and theoretical structural determination, spectroscopy and electrochemistry of cobalt (III) Schiff base complexes: immobilization of complexes onto Montmorillonite-K10 nanoclay. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1238-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Murai T, Yamaguchi K, Hayano T, Maruyama T, Kawai K, Kawakami H, Yashita A. Synthesis and Photophysical Properties of 5-N-Arylamino-4-methylthiazoles Obtained from Direct C–H Arylations and Buchwald–Hartwig Aminations of 4-Methylthiazole. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Toshiaki Murai
- Department of Chemistry
and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kirara Yamaguchi
- Department of Chemistry
and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Teppei Hayano
- Department of Chemistry
and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Toshifumi Maruyama
- Department of Chemistry
and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Koji Kawai
- Miyoshi Oil & Fat Co., Ltd., 4-66-1 Horikiri, Katsushika-Ku, Tokyo 124-8510, Japan
| | - Hayato Kawakami
- Miyoshi Oil & Fat Co., Ltd., 4-66-1 Horikiri, Katsushika-Ku, Tokyo 124-8510, Japan
| | - Akira Yashita
- Miyoshi Oil & Fat Co., Ltd., 4-66-1 Horikiri, Katsushika-Ku, Tokyo 124-8510, Japan
| |
Collapse
|