1
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Li X, Liu C, Zhu H, Wang K, Ren X, Ma L, Zhang X, Liu M, Zhu B. Recent advances in small-molecule fluorescent probes with the function of targeting cancer receptors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5947-5977. [PMID: 37909733 DOI: 10.1039/d3ay01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is "the sword of Damocles" that threatens human life and health. Therefore, the diagnosis and treatment of cancer have been receiving much attention. Many overexpressed receptors on the surface of cancer cells provide us with an effective way to specifically identify the cancer cells, and receptor targeting strategies are becoming one of the hot ideas to enhance the ability of fluorescent probes to target tumors. Fluorescent probes connected to ligands are targeted at cancer cell surfaces through receptor-mediated endocytosis. Receptor-targeting probes can image and track cancer cells, determine tumor boundaries, monitor deep lesions, and play a role in clinical medicine, such as fluorescent imaging-guided surgery. In this review, based on the perspective of small molecule fluorescent probes, we reviewed the design ideas, photophysical properties, and applications of receptor-targeting probes for detecting biomarkers in imaging and tracing cancer cells and prospected the future developmental direction of such probes. We hope that this review will provide more ideas for the design and development of active targeting probes for receptors and lead to more applications in the medical field.
Collapse
Affiliation(s)
- Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Zhao J, Tang C, Zhang K, Li X, Dai C, Gu B. Construction of a novel ESIPT and AIE-based fluorescent sensor for sequentially detecting Cu 2+ and H 2S in both living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122951. [PMID: 37270973 DOI: 10.1016/j.saa.2023.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The development of effective methods for tracking Cu2+ and H2S in living organisms is urgently required due to their vital function in a variety of pathophysiological processes. In this work, a new fluorescent sensor BDF with excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) features for the successive detection of Cu2+ and H2S was constructed by introducing 3,5-bis(trifluoromethyl)phenylacetonitrile into the benzothiazole skeleton. BDF showed a fast, selective and sensitive fluorescence "turn off" response to Cu2+ in physiological media, and the situ-formed complex can serve as a fluorescence "turn on" sensor for highly selective detection of H2S through the Cu2+ displacement approach. In addition, the detection limits of BDF for Cu2+ and H2S were determined to be 0.05 and 1.95 μM, respectively. Encouraged by its favourable features, including strong red fluorescence from the AIE effect, large Stokes shift (285 nm), high anti-interference ability and good function at physiological pH as well as a low toxicity, BDF was successfully applied for the consequent imaging of Cu2+ and H2S in both living cells and zebrafish, making it an ideal candidate for detecting and imaging of Cu2+ and H2S in live systems.
Collapse
Affiliation(s)
- Jingjun Zhao
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Can Tang
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Keyang Zhang
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Xinyu Li
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Cong Dai
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Biao Gu
- Key Laboratory of Organometallic New Materials, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, PR China.
| |
Collapse
|
4
|
Meng Z, Zhao F, Wang Z, Yang Y, Wang S. An efficient tetrahydroquinazolin-2-amine derivative-grafted cellulose fluorescent probe for detection of Cu 2+ and Zn 2. Carbohydr Polym 2023; 303:120445. [PMID: 36657857 DOI: 10.1016/j.carbpol.2022.120445] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Cu2+ and Zn2+ play crucial roles in many physiological processes, and their disorder will cause harm to human health. An efficient difunctional fluorescent probe CMC-GE-PQA for simultaneous detection of Cu2+ and Zn2+ was synthesized based on carboxymethyl cellulose. The probe CMC-GE-PQA exhibited a moderate blue fluorescence color. Interestingly, this probe showed a distinct fluorescence enhancement response toward Zn2+, while it displayed a significant fluorescence quenching response toward Cu2+. The detection limits of CMC-GE-PQA for Cu2+ and Zn2+ were calculated as low as 5.0 × 10-8 M and 1.0 × 10-7 M, respectively. The detection mechanisms of CMC-GE-PQA for Cu2+ and Zn2+ were fully verified by Job's plot, X-ray photoelectron spectroscopy analysis. The probe CMC-GE-PQA was applied to determine the trace amounts of Cu2+ and Zn2+ in environmental water samples. In addition, the probe CMC-GE-PQA-based fluorescent film and hydrogel were manufactured to achieve the portable detection of Cu2+ and Zn2+.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
A quinoline-fluoran hybrid fluorescent probe for selectively and sensitively sensing copper ions and fluorescence imaging application. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Zhang M, Zhang Y, Gan M, Xie L, Wang J, Jia W, Bian W, Shuang S, Choi MMF. Facile synthesis of sulfur and oxygen co-doped graphitic carbon nitride quantum dots for on-off detection of Cu 2+in real samples and living cells. Methods Appl Fluoresc 2022; 10. [PMID: 35705102 DOI: 10.1088/2050-6120/ac7944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
A fluorescent sulfur and oxygen co-doped graphitic carbon nitride quantum dots (S,O-CNQDs) were prepared from ethylenediaminetetraacetic acid disodium salt dihydrate and thiourea as the carbon and sulfur sources. The morphology and surface functional groups of S,O-CNQDs were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The fluorescence of S,O-CNQDs could be quenched efficiently by Cu2+under the optimum conditions. The S,O-CNQDs could function as an excellent fluorescent probe for Cu2+detection with a wide linear range of 0.50-15μM and a low detection limit of 0.58 nM. In addition, this fluorescent probe was employed for monitoring Cu2+in samples of tap water, lake water, human serum and urine with good recoveries from 99.0% to 110.0%. Moreover, the S,O-CNQDs with high cell penetration and low cytotoxicity were utilized for Cu2+detection in living cells. Owing to the excellent properties of S,O-CNQDs, the as-prepared S,O-CNQDs can be a potential candidate for biological applications.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yulu Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Mingyu Gan
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Liping Xie
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jing Wang
- Lvliang People's Hospital, Lvliang, 033000, People's Republic of China
| | - Weihua Jia
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Wei Bian
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.,Lvliang People's Hospital, Lvliang, 033000, People's Republic of China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, United Kingdom
| |
Collapse
|
8
|
A diarylethene-based fluorescent chemosensor for highly selective recognition of Zn2+ and its application in real samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
He H, Cheng Z, Zheng L, Zhang X. Evaluation of Fluorescent Cu 2+ Probes: Instant Sensing, Cell Permeable Recognition and Quantitative Detection. Molecules 2021; 26:512. [PMID: 33478076 PMCID: PMC7835809 DOI: 10.3390/molecules26020512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
By incorporating a rhodamine spirolactam structure as the recognition site for Cu2+, two novel probes were synthesized through a connection of rhodamine 6G acylhydrazine and 5-formyl-6-hydroxyl-4-methylcoumarin/2,4-dihydroxybenzaldehyde. In the recognition process of probes towards Cu2+, the spirolactam ring exhibited opening and closing, accompanying an instant and specific change in fluorescence and in color, which could also achieve a naked-eye and semiquantitative recognition of aqueous Cu2+ besides the fluorescent Cu2+ detection method. Fluorescent analyses and ECV304 cell imaging further revealed the probes' good optical stability, instant response, low toxicity, and membrane permeability, which offers future possibilities for the probes' instant detection and the real-time tracking of Cu2+ in biological systems.
Collapse
Affiliation(s)
| | - Zhao Cheng
- School of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (H.H.); (L.Z.); (X.Z.)
| | | | | |
Collapse
|
10
|
A colorimetric, ultraviolet absorption and fluorescence three-signal probe based on bis-carbazole for Al3+ detection and the application in cell imaging. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Yang T, Zuo Y, Zhang Y, Gou Z, Lin W. Novel polysiloxane-based rhodamine B fluorescent probe for selectively detection of Al 3+ and its application in living-cell and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:207-213. [PMID: 30901706 DOI: 10.1016/j.saa.2019.01.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Polysiloxanes have excellent stability and biological relevance and are suitable for biological research. However, there were few polysiloxane-based fluorescent probes for bioimaging. This report successfully designed a new polysiloxane-based polymer fluorescent probe (RB-1) for the first time as a "turn-on" fluorescent probe response to Al3+ ion with highly sensitive and selectivity. Importantly, this probe could also apply both in cell and zebrafish imaging, indicating the huge application development prospects of polysiloxane-based fluorescent probes in future.
Collapse
Affiliation(s)
- Tingxin Yang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Yujing Zuo
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Yu Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Zhiming Gou
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
12
|
Zhu D, Ren A, He X, Luo Y, Duan Z, Yan X, Xiong Y, Zhong X. A novel ratiometric fluorescent probe for selective and sensitive detection of Cu2+ in complete aqueous solution. SENSORS AND ACTUATORS B: CHEMICAL 2017; 252:134-141. [DOI: 10.1016/j.snb.2017.05.141] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
13
|
Zhang B, Qin F, Niu H, Liu Y, Zhang D, Ye Y. A highly sensitive and fast responsive naphthalimide-based fluorescent probe for Cu2+ and its application. NEW J CHEM 2017. [DOI: 10.1039/c7nj02813j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The response of the probe L to Cu2+ is reversible and very fast (20 s). L has a low detection limit of 49 nM and was used for imaging of Cu2+ in MCF-7 cells with satisfying results. The sensor L can be analyzed with a molecular logic gate.
Collapse
Affiliation(s)
- Beibei Zhang
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Fengyun Qin
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Huawei Niu
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Yao Liu
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences
- Zhengzhou
- China
| | - Yong Ye
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University
| |
Collapse
|