1
|
Linghu Y, Liu M, Wang M, Luo Y, Lan W, Wang J. A near-infrared hepatocyte-targeting probe based on Tricyanofuran to detect cysteine in vivo: Design, synthesis and evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124802. [PMID: 38996760 DOI: 10.1016/j.saa.2024.124802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
In this work, a near-infrared hepatocyte-targeting fluorescence probe TCF-Gal-Cys was developed. The TCF-Gal-Cys exhibited a low detection limit, good sensitivity and selectivity toward Cys. The responsive mechanism of TCF-Gal-Cys was proposed that the acrylate of TCF-Gal-Cys was subsequently attacked by the thiol group and the amino group of Cys, releasing a strong near-infrared fluorescent group. TCF-Gal-Cys displayed a good hepatocyte-targeting capacity and could specifically distinguish hepatocytes from A549, Hela, SGC-7901 cells because the galactose group of TCF-Gal-Cys can be recognized by HepG2 cells overexpressing ASGPR. The TCF-Gal-Cys has achieved excellently imaging performance to Cys in the zebrafish, so TCF-Gal-Cys has potential to be an effective tool to in real time monitor Cys-related diseases in vitro and in vivo.
Collapse
Affiliation(s)
- Yanan Linghu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Min Liu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yi Luo
- State Key Laboratory of Traditional Chinese Medicine, Guangxi Institute for Food and Drug Control, Nanning 530021, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Zhang W, Wu B, Liang M, Zhang M, Hu Y, Huang ZS, Ye X, Du B, Quan YY, Jiang Y. A lysosome-targeted fluorescent probe based on a BODIPY structure for Cys/Hcy detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:686-694. [PMID: 38205809 DOI: 10.1039/d3ay01965a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cysteine (Cys) and homocysteine (Hcy) are important biothiols in living organisms. They play important roles in a variety of physiological and pathological processes. Therefore, it is very important to design an optical probe for the selective detection of Cys/Hcy. Herein, we report the design and synthesis of a fluorescent probe NBD-B-T based on a boron-dipyrromethene (BODIPY) structure, which showed an excellent lysosome targeting ability and an outstanding Cys/Hcy detection capacity. For NBD-B-T, the sensing group 7-nitro-2,1,3-benzoxadiazole (NBD) and the lysosomal targeting group morpholine were introduced. The results show that the NBD-B-T probe can detect Cys/Hcy with fluorescence emission turn-on performance. The low detection limits of this probe are about 76.0 nM for Hcy and 97.6 nM for Cys, respectively. The NBD-B-T probe has a low detection limit, high stability, and excellent selectivity and sensitivity. More importantly, the NBD-B-T can target lysosome, and simultaneously detect the Cys/Hcy in living cells.
Collapse
Affiliation(s)
- Wenxuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Binbin Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Manshan Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Mengpei Zhang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University: Xiangshan First People's Hospital Medical and Health Group, Xiangshan 315700, China.
| | - Yutao Hu
- The Affiliated Xiangshan Hospital of Wenzhou Medical University: Xiangshan First People's Hospital Medical and Health Group, Xiangshan 315700, China.
| | - Zu-Sheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaoxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Bing Du
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yun-Yun Quan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University: Xiangshan First People's Hospital Medical and Health Group, Xiangshan 315700, China.
| |
Collapse
|
3
|
Zhao Y, Wang T, Abdulkhaleq AMA, Zuo Z, Peng Y, Zhou X. A Novel Fluorescence Probe Based on Azamonardine for Detecting and Imaging Cysteine in Cells and Zebrafish with High Selectivity and Sensitivity. Molecules 2023; 28:6246. [PMID: 37687075 PMCID: PMC10488781 DOI: 10.3390/molecules28176246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
A novel fluorescent probe based on azamonardine (Aza) fluorophore was designed and synthesized for the highly selective detection of cysteine (Cys) in vivo and in vitro. After reacting with acryloyl chloride, the fluorescence of Aza is effectively quenched, resulting in the formation of the Aza-acryl probe. Upon the addition of Cys, the ester bond of Aza-acryl is cleaved, releasing a new compound (Compound 1) with strong fluorescence, thereby achieving fluorescence turn-on detection of Cys. The structure of Aza-acryl was characterized using X-ray crystallography and NMR spectroscopy. Additionally, density functional theory was employed to elucidate the quenching mechanism of the acyl group on the Aza. Aza-acryl exhibits high selectivity towards Cys and distinguishes it from other biothiols such as homocysteine (Hcy) and glutathione (GSH). The mechanism of Aza-acryl for detecting Cys was investigated through HPLC, NMR spectroscopy, high-resolution mass spectrometry, and reaction kinetics experiments. Aza-acryl demonstrates excellent imaging capabilities for Cys in cells and zebrafish, providing a reliable and selectable tool for the detection and imaging of Cys in biological systems.
Collapse
Affiliation(s)
- Yixu Zhao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou 121001, China;
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121001, China
| | - Ting Wang
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China;
| | | | - Zhongfu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou 121001, China;
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121001, China
| | - Yongjin Peng
- College of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China;
| |
Collapse
|
4
|
Lv J, Jiao X, He DD, Hussain E, Yang N, Wang Y, Zhang H, Chen L, Jin X, Liu N, Yu C. Sensitive and discriminative detection of cysteine by a Nile red-based NIR fluorescence probe. Anal Bioanal Chem 2023; 415:4875-4883. [PMID: 37318553 DOI: 10.1007/s00216-023-04790-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Cysteine (Cys) is a significant biological mercaptan that achieves key roles in several important physiological processes, such as reversible redox homeostasis in living organisms. Abnormal levels of Cys in the human body are directly related to many diseases. In this work, we constructed a sensitive sensor (Cys-NR) by connecting a Cys recognition group to a Nile red derivative. Due to photo-induced electron transfer (PET), the Cys-NR probe showed little fluorescence at 650 nm. With the addition of Cys to the assay solution, the chlorine unit of the probe was substituted by the thiol group of Cys. Further, the amino and sulfhydryl groups in cysteine underwent an intramolecular rearrangement, which led to the Cys-NR probe water solution turning from colorless to pink with an enhancement in fluorescence. The red fluorescence at 650 nm increased about 20 times. Based on the turn-on signal, a selective Cys detection method is developed. The probe signal is not affected by various potential interferences or other competing biothiols and the limit of detection (LOD) is determined to be 0.44 μM. In addition, the probe is further employed for imaging of Cys in live cells, revealing good biological imaging ability that could provide a new way of intracellular Cys detection.
Collapse
Affiliation(s)
- Junying Lv
- The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- School of Chemistry and Pharmacy, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xiaorui Jiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Di Demi He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Ejaz Hussain
- Department of Chemistry, Faculty of Life Sciences, Karakoram International University, Gilgit, Gilgit-Baltistan, 15100, Pakistan
| | - Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yongxiang Wang
- The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hui Zhang
- The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Liping Chen
- The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Xing Jin
- School of Chemistry and Pharmacy, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Shi GJ, Xue XL, Zhang Q, Wang KP, Chen S, Tang L, Hu ZQ. A hemicyanine-based near-infrared fluorescent probe for visualizing biothiols fluctuations induced by Ag+ in mitochondria. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Lin Z, Zheng XL, Mao XJ, Li DF, Hou RB, Xia Y. Fluorescent probe based on coumarin derivative for the selective detection of cysteine in living cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
A simple fluorescent probe for glutathione detection and its bioimaging application in living cells. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yang Y, Zhang L, Zhang X, Liu S, Wang Y, Zhang L, Ma Z, You H, Chen L. A cysteine-selective fluorescent probe for monitoring stress response cysteine fluctuations. Chem Commun (Camb) 2021; 57:5810-5813. [PMID: 33999987 DOI: 10.1039/d1cc01110c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rare studies provided evidence for the real-time monitoring of stress response cysteine fluctuations. Here, we have successfully designed and synthesized a cysteine-selective fluorescent probe 1 to monitor stress response Cys fluctuations, providing visual evidence of Hg2+ regulated cysteine fluctuations for the first time, which may open a new way to help researchers to reveal the mechanism of heavy metal ion poisoning.
Collapse
Affiliation(s)
- Yang Yang
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhuo Ma
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huiyan You
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Gao C, Zhang Q, Ma L, Song P, Xia LX. Nanoscaled Fe‐MIL‐88NH
2
as a Turn‐On Platform for Detecting and Bioimaging Cysteine. ChemistrySelect 2021. [DOI: 10.1002/slct.202100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ce Gao
- College of Chemistry Liaoning University Shenyang 110036 China
| | - Qijia Zhang
- College of Chemistry Liaoning University Shenyang 110036 China
| | - Liping Ma
- College of Chemistry Liaoning University Shenyang 110036 China
| | - P. Song
- College of Physics Liaoning University Shenyang 110036 China
| | - L. X. Xia
- College of Chemistry Liaoning University Shenyang 110036 China
- Yingkou Institute of Technology Yingkou 115014 China
| |
Collapse
|
10
|
Chao J, Duan Y, Zhang Y, Huo F, Yin C. “Turn-on” fluorescence probe for selective recognition of endogenous and exogenous cysteine in cells. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Development of a semiacenaphthenofluorescein-based optical and fluorescent sensor for imaging cysteine in cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
Herein, a simple and efficient fluorescence analysis method for L-Cysteine (L-Cys) was established. The method was based on the fluorescent "off-on" mode of nitrogen doped carbon dots (NCDs). The NCDs were prepared via a facile one-step solvothermal method. In the process of exploring the bio-functional application of these newly synthesized NCDs, we found these NCDs with rich functional groups exhibited excellent optical properties. In addition, these newly synthesized NCDs showed an excitation-dependent emissions photolumine-scent (PL) property and exhibited good performance in the detection of Fe3+ ions by quenching the blue emission fluorescence. Interestingly, the quenched fluorescence of NCDs was recovered with the addition of L-Cys, which provided a novel approach for L-Cys detection. The NCDs-based fluorescent "off-on" sensor has a wide linear detection range (0-100 μM), and a relatively low detection limits (0.35 μM) for L-Cys. This simple fluorescent "off-on" approach is, very sensitive and selective for L-Cys detection, which also provides a new insight on NCDs biosensor application.
Collapse
|
13
|
Fluorescent probes on the basis of coumarin derivatives for determining biogenic thiols and thiophenols. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02486-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019; 119:10403-10519. [PMID: 31314507 DOI: 10.1021/acs.chemrev.9b00145] [Citation(s) in RCA: 645] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Duxia Cao
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Peter Verwilst
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | | | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China.,School of Chemistry and Chemical Engineering , Guangxi University , Nanning , Guangxi 530004 , P. R. China
| |
Collapse
|
15
|
Yan F, Sun X, Zu F, Bai Z, Jiang Y, Fan K, Wang J. Fluorescent probes for detecting cysteine. Methods Appl Fluoresc 2018; 6:042001. [PMID: 30039804 DOI: 10.1088/2050-6120/aad580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cysteine plays a crucial role in physiological processes. Therefore, it is necessary to develop a method for detecting cysteine. Fluorimetry has the advantages of convenient detection, short response time, high sensitivity and good selectivity. In this review, fluorescent probes that detect cysteine over the past three years are summarized based on structural features of fluorophores such as coumarin, BODIPY, rhodamine, fluorescein, CDs, QDs, etc and reaction groups including acrylate, aldehyde, halogen, 7-nitrobenzofurazan, etc. Then, effects of different combinations between fluorophores and response groups on probe properties and detection performances are discussed.
Collapse
|
16
|
Huang J, Chen Y, Qi J, Zhou X, Niu L, Yan Z, Wang J, Zhao G. A dual-selective fluorescent probe for discriminating glutathione and homocysteine simultaneously. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:105-111. [PMID: 29738890 DOI: 10.1016/j.saa.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Homocysteine (Hcy) and glutathione (GSH) play important roles in a variety of physiological and pathological processes. Abnormal levels of Hcy and GSH are related to various diseases. Fluorescent probes for detecting them with sensitive and selective are highly desirable. However, efficient discrimination of Hcy and GSH is still a challenge for their similar molecular structures and chemical properties. Herein, we report a naphthalimide and sulfonyl benzoxadiazole (SBD) based dual-selective fluorescent probe for Hcy and GSH over other amino acids. The probe exhibited weak fluorescence (Φ = 0.075, in DMSO) at 490 nm and fluorescence enhancement upon addition of GSH (1-20 μM) with a detection limit of 0.8 μM. The probe also exhibited ratiometric fluorescence responses for Hcy (fluorescence at 490 nm decreased and fluorescence at 552 nm increased). The fluorescence intensity ratio (I552/I490) showed a good linear correlation with the Hcy concentrations in range of 3-20 μM and the detection limit was 0.1 μM. Moreover, this probe was successfully utilized for monitoring Hcy and GSH in living cells.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Yanan Chen
- Institute of Behavior and Psychology, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China.
| | - Xiaomin Zhou
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Zhijie Yan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Jimming Campus, Kaifeng 475004, Henan, China.
| | - Guoxiang Zhao
- Institute of Behavior and Psychology, Henan University Jimming Campus, Kaifeng 475004, Henan, China
| |
Collapse
|
17
|
Shen Y, Zhang X, Zhang C, Zhang Y, Jin J, Li H. A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:427-434. [PMID: 29073543 DOI: 10.1016/j.saa.2017.09.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
A simple benzothiazole fluorescent chemosensor was developed for the fast sequential detection of Cu2+ and biothiols through modulating the excited-state intramolecular proton transfer (ESIPT) process. The compound 1 exhibits highly selective and sensitive fluorescence "on-off" recognition to Cu2+ with a 1:1 binding stoichiometry by ESIPT hinder. The in situ generated 1-Cu2+ complex can serve as an "on-off" fluorescent probe for high selectivity toward biothiols via Cu2+ displacement approach, which exerts ESIPT recovery. It is worth pointing out that the 1-Cu2+ complex shows faster for cysteins (within 1min) than other biothiols such as homocysteine (25min) and glutathione (25min). Moreover, the compound 1 displays 160nm Stoke-shift for reversibly monitoring Cu2+ and biothiols. In addition, the probe is successfully used for fluorescent cellular imaging. This strategy via modulation the ESIPT state has been used for determination of Cu2+ and Cys with satisfactory results, which further demonstrates its value of practical applications.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Preparation and Application of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Xiangyang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Chunxiang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Junling Jin
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
18
|
Zeng RF, Lan JS, Li XD, Liang HF, Liao Y, Lu YJ, Zhang T, Ding Y. A Fluorescent Coumarin-Based Probe for the Fast Detection of Cysteine with Live Cell Application. Molecules 2017; 22:E1618. [PMID: 28954423 PMCID: PMC6151380 DOI: 10.3390/molecules22101618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
A new coumarin-based fluorescent probe, containing an allylic esters group, has been designed and synthesized for sensing cysteine in physiological pH. In this fluorescent probe, the coumarin was applied as the fluorophore and an allylic esters group was combined as both a fluorescence quencher and a recognition unit. The probe can selectively and sensitively detect cysteine (Cys) over homocysteine, glutathione, and other amino acids, and has a rapid response time of 30 min and a low detection limit of 47.7 nM. In addition, the probe could be applied for cell imaging with low cytotoxicity.
Collapse
Affiliation(s)
- Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Shuai Lan
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiao-Die Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui-Fen Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Liao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying-Jie Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|