1
|
Rashid U, Medrano Sandonas L, Chatir E, Ziani Z, Sreelakshmi PA, Cobo S, Gutierrez R, Cuniberti G, Kaliginedi V. Mapping the Extended Ground State Reactivity Landscape of a Photoswitchable Molecule at a Single Molecular Level. J Am Chem Soc 2025; 147:830-840. [PMID: 39680608 DOI: 10.1021/jacs.4c13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Photoswitchable molecules with structural flexibility can exhibit a complex ground state potential energy landscape due to the accessibility of multiple metastable states at merely low energy barriers. However, conventional bulk analytical techniques are limited in their ability to probe these metastable ground states and their relative energies. This is partially due to the difficulty of inducing changes in small molecules in their ground state, as they do not respond to external stimuli, such as mechanical force, unless they are incorporated into larger polymer networks. This hinders the understanding of ground-state reactivity and the associated dynamics. In this study, we leverage the "perturb-probe" capability of the single molecular break junction technique to explore the ground state 6π electrocyclization of a dithienylethene (DTE) derivative, a process traditionally achieved through electro- or photochromism. Our findings reveal that this reaction can also be triggered by mechanical force and an oriented electric field at the single-molecule level via ground state dynamics. We demonstrated that external perturbations could control the ground state reaction dynamics and steer the reaction trajectories away from constraints imposed by typical excited state dynamics. This strategy will thus offer access to a whole new dimension of single molecular electromechanical conversions and extend our knowledge of the ground state potential energy surface available to molecules under external force fields.
Collapse
Affiliation(s)
- Umar Rashid
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Leonardo Medrano Sandonas
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Elarbi Chatir
- Université Grenoble Alpes, CNRS, DCM, UMR 5250, 38000 Grenoble, France
| | - Zakaria Ziani
- LCC, CNRS, UPS, and INP Université de Toulouse, 31077 Toulouse, France
| | - P A Sreelakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Saioa Cobo
- Université Grenoble Alpes, CNRS, DCM, UMR 5250, 38000 Grenoble, France
- LCC, CNRS, UPS, and INP Université de Toulouse, 31077 Toulouse, France
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Zhang C, Cheng J, Wu Q, Hou S, Feng S, Jiang B, Lambert CJ, Gao X, Li Y, Li J. Enhanced π-π Stacking between Dipole-Bearing Single Molecules Revealed by Conductance Measurement. J Am Chem Soc 2023; 145:1617-1630. [PMID: 36625785 DOI: 10.1021/jacs.2c09656] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dipoles are widely involved in π-π interactions and are central to many chemical and biological functions, but their influence on the strength of π-π interactions remains unclear. Here, we report a study of π-π interaction between azulene-based, polar single molecules and between naphthalene-based, nonpolar single molecules. By performing scanning tunneling microscopy break junction measurements of single-molecule conductance, we show that the π-stacked dimers formed by the azulene-based, polar aromatic structures feature higher electrical conductivity and mechanical stability than those formed by the naphthalene-based, nonpolar molecules. Mechanical control of π-π interactions in both rotational and translational motion reveals a sensitive dependence of the stacking strength on relative alignment between the dipoles. The antiparallel alignment of the dipoles was found to be the optimal stacking configuration that underpins the observed enhancement of π-π stacking between azulene-based single molecules. Density functional theory calculations further explained the observed enhancement of stacking strength and the corresponding charge transport efficiency. Our experimental and theoretical results show that the antiparallel alignment of the dipole moments significantly enhances the electronic coupling and mechanical stability of π-π stacking. In addition, in the formation of single-molecule junctions, the azulene group was experimentally and theoretically proved to form a Au-π contact with electrodes with high charge transport efficiency. This paper provides evidence and interpretation of the role of dipoles in π-π interactions at the single-molecule level and offers new insights into potential applications in supramolecular devices.
Collapse
Affiliation(s)
- Chengyang Zhang
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jie Cheng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, LancasterLA1 4YB, U.K
| | - Songjun Hou
- Department of Physics, Lancaster University, LancasterLA1 4YB, U.K
| | - Sai Feng
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Colin J Lambert
- Department of Physics, Lancaster University, LancasterLA1 4YB, U.K
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yueqi Li
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jinghong Li
- Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei230026, China.,Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing100084, China
| |
Collapse
|
3
|
Chen X, Zhou Y, Yang M, Wang J, Guo C, Wang Y. A novel multi-stimuli-responsive organogel sensor for detecting Cu2+ and Co2+ based on benzotriazole derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Gamov G, Kuranova N, Pogonin A, Aleksandriiskii V, Sharnin V. Hydrogen bonds determine the signal arrangement in 13 C NMR spectra of nicotinate. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|