1
|
Wang B, Yang D, Zhong X, Liu Y, Huang Y. A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice. Molecules 2024; 29:1993. [PMID: 38731485 PMCID: PMC11085742 DOI: 10.3390/molecules29091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Abnormal viscosity is closely related to the occurrence of many diseases, such as cancer. Therefore, real-time detection of changes in viscosity in living cells is of great importance. Fluorescent molecular rotors play a critical role in detecting changes in cellular viscosity. Developing red emission viscosity probes with large Stokes shifts and high sensitivity and specificity remains an urgent and important topic. Herein, a novel viscosity-sensitive fluorescent probe (TCF-VIS1) with a large stokes shift and red emission was prepared based on the 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton. Due to intramolecular rotation, the probe itself does not fluorescence at low viscosity. With the increase in viscosity, the rotation of TCF-VIS1 is limited, and its fluorescence is obviously enhanced. The probe has the advantages of simple preparation, large Stokes shift, good sensitivity and selectivity, and low cytotoxicity, which make it successfully used for viscosity detection in living cells. Moreover, TCF-VIS1 showed its potential for cancer diagnosis at the cell level and in tumor-bearing mice by detecting viscosity. Therefore, the probe is expected to enrich strategies for the detection of viscosity in biological systems and offer a potential tool for cancer diagnosis.
Collapse
Affiliation(s)
- Beilei Wang
- School of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401220, China;
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; (X.Z.); (Y.L.)
| | - Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohong Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; (X.Z.); (Y.L.)
| | - Yuhui Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; (X.Z.); (Y.L.)
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China; (X.Z.); (Y.L.)
| |
Collapse
|
2
|
Xiao Y, Wan J, Gao X, Wei Y, Fang J, Shen B. Versatile Fluorescence Lifetime-Based Copper Probe to Quantify Mitochondrial Membrane Potential and Reveal Its Interaction with Protein Aggregation. Anal Chem 2024; 96:6493-6500. [PMID: 38595323 DOI: 10.1021/acs.analchem.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mitochondria play a crucial role in maintaining cellular homeostasis, and the depolarization of mitochondrial membrane potential (MMP) is an important signal of apoptosis. Additionally, protein misfolding and aggregation are closely related to diseases including neurodegenerative diseases, diabetes, and cancers. However, the interaction between MMP changes and disease-related protein aggregation was rarely studied. Herein, we report a novel "turn-on" fluorescent probe MitoRhB that specifically targets to mitochondria for Cu2+ detection in situ. The fluorescence lifetime (τ) of MitoRhB exhibits a positive correlation with MMP changes, allowing us to quantitatively determine the relative MMP during SOD1 (A4 V) protein aggregation. Finally, we found that (1) the increasing concentrations of copper will accelerate the depolarization of mitochondria and reduce MMP; (2) the depolarization of mitochondria can intensify the degree of protein aggregation, suggesting a new routine of copper-induced cell death mediated through abnormal MMP depolarization and protein aggregation.
Collapse
Affiliation(s)
- Yu Xiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jingyang Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiaochen Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yu Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiabao Fang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Dual-response near-infrared fluorescent probe for detecting cyanide and mitochondrial viscosity and its application in bioimaging. Food Chem 2023; 407:135163. [PMID: 36502726 DOI: 10.1016/j.foodchem.2022.135163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Viscosity has a significant impact on aerobic respiration in mitochondria. Many foods contain cyanide (CN-) and can cause serious toxicity when consumed in excess. This study discusses the design and synthesis of a dual-response coumarin-based near-infrared fluorescent probe (CCB) for the simultaneous detection of mitochondrial viscosity and CN-. CCB and viscosity have a strong log-linear relationship with a correlation coefficient of 0.997. Additionally, CN- detection can be visualized using a colorimetric method with a detection limit as low as 0.22 µM. Test strips were prepared to facilitate CN- detection in plants. Additional studies have shown the remarkable biocompatibility of CCB, which may be used for real time detection of exogenous CN- and intracellular mitochondrial viscosity and in vivo bioimaging of viscosity in mice. The probe is crucial for understanding disorders connected with mitochondrial viscosity and identifying CN- in daily living.
Collapse
|
4
|
Bakov VV, Georgiev NI, Bojinov VB. A Novel Fluorescent Probe for Determination of pH and Viscosity Based on a Highly Water-Soluble 1,8-Naphthalimide Rotor. Molecules 2022; 27:molecules27217556. [PMID: 36364383 PMCID: PMC9657100 DOI: 10.3390/molecules27217556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
A novel highly water-soluble 1,8-naphthalimide with pH and viscosity-sensing fluorescence was synthesized and investigated. The synthesized compound was designed as a molecular device in which a molecular rotor and molecular “off-on” switcher were integrated. In order to obtain a TICT driven molecular motion at C-4 position of the 1,8-naphthalimide fluorophore, a 4-methylpiperazinyl fragment was introduced. The molecular motion was confirmed after photophysical investigation in solvents with different viscosity; furthermore, the fluorescence-sensing properties of the examined compound were investigated in 100% aqueous medium and it was found that it could be used as an efficient fluorescent probe for pH. Due to the non-emissive deexcitation nature of the TICT fluorophore, the novel system showed low yellow–green emission, which represented “power-on”/“rotor-on” state. The protonation of the methylpiperazine amine destabilized the TICT process, which was accompanied by fluorescence enhancement indicating a “power-on”/“rotor-off” state of the system. The results obtained clearly illustrated the great potential of the synthesized compound to serve as pH- and viscosity-sensing material in aqueous solution.
Collapse
Affiliation(s)
- Ventsislav V. Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Nikolai I. Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +359-2-8163207 (N.I.G.); +359-2-8163206 (V.B.B.)
| | - Vladimir B. Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +359-2-8163207 (N.I.G.); +359-2-8163206 (V.B.B.)
| |
Collapse
|
5
|
Liu P, Wu WN, Wang Y, Fan YC, Xu ZH. A dual-ratiometric mitochondria-targeted fluorescent probe to detect hydrazine in soil samples and biological imaging. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129713. [PMID: 35944434 DOI: 10.1016/j.jhazmat.2022.129713] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Hydrazine (N2H4) is carcinogenic, extremely toxic, and induces serious environmental contamination and physiological dysfunction; however, it is widely used as an industrial material. Hence, the development of a simple and effective analytical method to detect N2H4 detection in both environmental and biological sectors is warranted. In this work, an intramolecular charge transfer (ICT)-based fluorescent probe 1, namely (Z)- 1-(4-acetoxybenzyl)- 4-(1-cyano-2-(7-(diethylamino)- 2-oxo-2 H-chromen-3-yl)vinyl)pyridin-1-ium, was designed for dual-excitation (420 and 600 nm, excitation separations >160 nm), near infrared (NIR)-emissive, and ratiometric fluorescent detection of N2H4. The sensing behavior of probe 1 for N2H4 detection was shown to be available over a wide pH range, and detection limits of 68 nM and 569 nM were achieved at excitation wavelengths of 420 and 600 nm, respectively. In addition, probe 1 was successfully used to image mitochondrial N2H4 in living cells and zebrafish. Furthermore, the probe was also capable of determining hydrazine signals in test strips and environmental soil.
Collapse
Affiliation(s)
- Pan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
6
|
Liu YL, Feng AX, Yuan MS. Photophysical properties and stimuli-responsive crystal-state luminescence switching of morpholine-modified naphthalic anhydride derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119720. [PMID: 33819760 DOI: 10.1016/j.saa.2021.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Stimuli-response organic solid-state luminescence switching materials are attracting increasing interest due to their smart photophysical properties. In this study, a morpholine-modified naphthalic anhydride derivative, 4-(4-morpholinyl)naphthalic anhydride (MBC), was synthesized and studied. Its two crystal polymorphs, MBC-G and MBC-O, were obtained under different crystallization conditions. These two distinct crystals show significantly different solid-state luminescence behaviors: a green emission at 535 nm for MBC-G, and an orange emission at 572 nm for MBC-O. Upon fiercely grinding the MBC-G crystal or melting and then quickly cooling it, a phase transition occurs from MBC-G to MBC-O, accompanied by a fluorescence change from green to orange. The reverse transformation from MBC-O to MBC-G can be achieved by recrystallization. The X-ray single crystal structures show that the green emission should be attributed to molecular J-aggregation in the crystal packing, and the orange emission may originate from molecular H-aggregation. This switchable color nature gives MBC the promising candidate for potential smart anti-counterfeiting and light-emitting materials.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033000, PR China; College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Ai-Xia Feng
- School of Chemistry & Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
Quan W, Zhang G, Huang L, Song W, Lin W. A novel fluorescent probe for high-fidelity imaging of mitochondria viscosity changes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Chen H, Zhao J, Lin J, Dong B, Li H, Geng B, Yan M. Amphiphilic copolymer fluorescent probe for mitochondrial viscosity detection and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119499. [PMID: 33556793 DOI: 10.1016/j.saa.2021.119499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The mitochondrial viscosity measurement with the amphiphilic copolymer fluorescent probe (PP) has been successfully revealed for the first time. PP was synthesized, starting from a hydrophobic rhodamine derivative fluorophore and hydrophilic 2-hydroxyethyl acrylate (HEA) by radical polymerization, which could be used to detect mitochondrial viscosity specifically. The systematic investigation demonstrated that the fluorescence emission of PP with a deep red emission increased about 9-fold when the medium is changed from methanol to 99% glycerol, indicating high viscosity dependence. Moreover, PP could self-assemble into nanospheres with the particle size of about 140 nm in water and the nano-structure enabled PP to enter living cells quickly. Cytotoxicity test showed that the cells survival rate remained above 70% at 70 μg·mL-1 of PP. Good biocompatibility and low cytotoxicity of PP are promising to provide a high contrast fluorescence imaging. Taken together, the results point the way to development of novel amphiphilic copolymer fluorescent probes-based the detection in solutions, physiology and pathology.
Collapse
Affiliation(s)
- Huiying Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jianzhi Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Junzhi Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Bing Geng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Xiao H, Li P, Tang B. Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems. Chemistry 2021; 27:6880-6898. [DOI: 10.1002/chem.202004888] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
10
|
Georgiev NI, Marinova NV, Bojinov VB. Design and synthesis of light-harvesting rotor based on 1,8-naphthalimide units. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Zhou L, Xie L, Liu C, Xiao Y. New trends of molecular probes based on the fluorophore 4-amino-1,8-naphthalimide. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Li X, Zhang R, Guo L, Zhang H, Meng F, Yang R, Li C, Liu Z, Yu X. Colocalization Coefficients of a Target-Switchable Fluorescent Probe Can Serve As an Indicator of Mitochondrial Membrane Potential. Anal Chem 2018; 91:2672-2677. [DOI: 10.1021/acs.analchem.8b03986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuechen Li
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Ruoyao Zhang
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Lifang Guo
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Huamiao Zhang
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Fangfang Meng
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Rui Yang
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Chuanya Li
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Zhiqiang Liu
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Xiaoqiang Yu
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|