1
|
Sensing and photocatalytic properties of a new 1D Zn(II)-based coordination polymer derived from the 3,5-dibromosalicylaldehyde nicotinoylhydrazone ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Fan L, Zhao D, Li B, Wang F, Deng Y, Peng Y, Wang X, Zhang X. Luminescent binuclear Zinc(II) organic framework as bifunctional water-stable chemosensor for efficient detection of antibiotics and Cr(VI) anions in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120232. [PMID: 34352500 DOI: 10.1016/j.saa.2021.120232] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
To achieve the ultrastable LMOFs with predominant luminescent sensing performances, the aromatic π-electron mixed ligands strategy was introduced, and the ternary LMOF of {[Zn2(HDDB)(bib)1.5]·3H2O}n (1), was fabricated based on 3,5-di(2',4'-dicarboxylphenyl)benozoic acid (H5DDB) and the N-donor of meta-bis(imidazol-1-yl)benzene (bib) under mixed solvothermal condition. LMOF 1 features the first reported 3D 3,4,4-c {62.83.10}{62.8}2{63.82.10}2 framework with 21.2 % porosity as well as high thermal and chemical stability. Further luminescent sensing showed that LMOF 1 as a bifunctional chemosensor possessing predominant detectability for sensitive detect the hexavalent chromates and nitroimidazoles/nitrofurans antibiotics in water through strong luminescent quenching effects, with excellent reusability as well as trace detection limits. Moreover, luminescent quenching mechanisms were further investigated from electron transfer and energy transfer viewpoints.
Collapse
Affiliation(s)
- Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China; Center for Optics Research and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Bei Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Yuxin Deng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Yuxin Peng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Xin Wang
- Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
3
|
Smirnova KS, Sukhikh TS, Adonin SA, El’tsov IV, Lider EV. STRUCTURAL FEATURES OF CADMIUM(II) COMPLEXES
WITH BIS(BENZIMIDAZOL-2-YL)METHANE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621050085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wang Y, Chen C, Liu H, Sun DL, Cheng WW, Xue YS. A series of coordination polymers constructed from mixed ligands for highly selective luminescence sensing of Fe3+ ions. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00455-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Gong Q, Wang J, Shi C, Liu QQ, Lu L, Singh A, Kumar A. 1,3-Bis(4′-carboxylatophenoxy)benzene and 3,5-bis(1-imidazoly)pyridine derived Zn( ii)/Cd( ii) coordination polymers: synthesis, structure and photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00498k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zn(ii) and Cd(ii)-based CPs derived from a 1,3-bis(4′-carboxylatophenoxy)benzene and 3,5-bis(1-imidazoly)pyridine synthesized and their photocatalytic properties for decomposition of methylene blue investigated.
Collapse
Affiliation(s)
- Qin Gong
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Jun Wang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Chuncheng Shi
- Department of Pharmacy
- School of Medicine
- Xi'an International University
- China
| | - Qiang-Qiang Liu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Lu Lu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Amita Singh
- Department of Chemistry
- Ram Manohar Lohiya University
- India
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|
6
|
Shi YS, Yu Q, Zhang JW, Cui GH. Four dual-functional luminescent Zn(ii)-MOFs based on 1,2,4,5-benzenetetracarboxylic acid with pyridylbenzimidazole ligands for detection of iron(iii) ions and acetylacetone. CrystEngComm 2021. [DOI: 10.1039/d0ce01619e] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four Zn-MOFs with different topological types were synthesized and characterized, MOFs 1–4 have excellent sensitivity, selectivity, recyclability and structural stabilities for detecting acac/Fe3+ in the naked eye range.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Qiang Yu
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| | | | - Guang-Hua Cui
- College of Chemical Engineering
- Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials
- North China University of Science and Technology
- Tangshan
- P. R. China
| |
Collapse
|
7
|
Fan L, Wang F, Zhao D, Sun X, Chen H, Wang H, Zhang X. Two cadmium(II) coordination polymers as multi-functional luminescent sensors for the detection of Cr(VI) anions, dichloronitroaniline pesticide, and nitrofuran antibiotic in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118467. [PMID: 32473560 DOI: 10.1016/j.saa.2020.118467] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 05/19/2023]
Abstract
Two ternary cadmium(II) coordination polymers, with the formulas being {[Cd(tptc)0.5(bpz)(H2O)]·0.5H2O}n (CP 1), and [Cd(tptc)0.5(bpy)]n (CP 2), were designed through mixed ligands strategy. Benefiting from the excellent chemical stability and luminescent property, two Cd(II) CPs possessing efficient multi-functional fluorescent responses toward Cr(VI) anions, 2,6-dichloro-4-nitroaniline pesticide, and nitrofuran antibiotic in aqueous media with high sensitivity, selectivity, and excellent recyclable behaviors with the detection limits (LODs) are 235 ppb for CrO42- anion, 343 ppb for Cr2O72- anion, 112 ppb for DCN pesticide, 62 ppb for NFT antibiotic for CP 1, and 173 ppb for CrO42- anion, 270 ppb for Cr2O72- anion, 638 ppb for DCN pesticide, 184 ppb for NFT antibiotic for CP 2, respectively. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photoinduced electron transfer (PET).
Collapse
Affiliation(s)
- Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China
| | - Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China
| | - Xinhu Sun
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China
| | - Huaiwei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| |
Collapse
|
8
|
Li AL, Liu D, Li YH, Cui GH. Coligand syntheses, crystal structures, luminescence and photocatalytic properties of 2D and 3D Ni(II) coordination polymers based on terephthalic acid and flexible bis(benzimidazole) linkers. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Qian LL, Blatov VA, Wang ZX, Ding JG, Zhu LM, Li K, Li BL, Wu B. Sonochemical synthesis and characterization of four nanostructural nickel coordination polymers and photocatalytic degradation of methylene blue. ULTRASONICS SONOCHEMISTRY 2019; 56:213-228. [PMID: 31101257 DOI: 10.1016/j.ultsonch.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/24/2019] [Accepted: 04/08/2019] [Indexed: 05/24/2023]
Abstract
Four nanostructural nickel(II) coordination polymers {[Ni(ttpa)(1,4-ndc)(H2O)2]·2H2O}n (1), {[Ni(ttpa)(1,3-bda)]·2H2O·DMF}n (2·2H2O·DMF), {[Ni(ttpa)(1,4-bdc)]·H2O}n (3) and {[Ni(ttpa)(aip)(H2O)]·3H2O}n (4·3H2O) were synthesized using hydrothermal and sonochemical methods (ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, 1,4-ndc = 1,4-naphthalenedicarboxylate, 1,3-bda = 1,3-benzenediacetate, 1,4-bdc = 1,4-benzenedicarboxylate, aip = 5-aminoisophthalate), and characterized by elemental analysis, IR spectra, scanning electron microscopy, single-crystal and powder X-ray diffraction analysis, optical band gaps, VB XPS spectra and luminescence. The effects of sonication power, time and frequency on the size and morphology of nano-sized 1-4 have been studied. 1 exhibits an unusual 2D + 2D → 3D inclined polycatenated motif based on the (3,3)-coordinated 63-hcb topology. 2 shows a (3,4)-coordinated 2D network of the bey topology. 3 presents a rare example of the 4-fold interpenetrating array of (3,5)-coordinated 3D network belonging to the 35T1 topology type. 4 displays an unusual 2D → 3D polythreaded network based on 2D sql networks. 1-4 exhibit luminescent emissions at 409, 399, 413 and 402 nm, respectively. 1-4 are semiconducting in nature, with Eg of 2.12 eV (1), 2.34 eV (2), 2.32 eV (3), and 2.47 eV (4). 1-4 are good catalysts for the degradation of MB under visible light irradiation. The effects of the size and morphology of nano-sized 1-4 on the photocatalytic efficiencies were studied. The higher sonication frequency obtains uniform and smaller nano-sized coordination polymers which have higher catalytic efficiencies.
Collapse
Affiliation(s)
- Lin-Lu Qian
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Vladislav A Blatov
- Samara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Molodogvardeyskaya St. 244, Samara 443100, Russia; Samara Center for Theoretical Materials Science (SCTMS), Samara University, Ac. Pavlov St. 1, Samara 443011, Russia
| | - Zhi-Xiang Wang
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jian-Gang Ding
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Li-Ming Zhu
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ke Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bao-Long Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Bing Wu
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
10
|
Qian LL, Wang ZX, Zhu LM, Li K, Li BL, Wu B. Synthesis, structure, spectral characteristic and photocatalytic degradation of organic dyes of a copper metal-organic framework based on tri(triazole) and pimelate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:372-377. [PMID: 30802793 DOI: 10.1016/j.saa.2019.02.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/13/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A copper(II) metal-organic framework {[Cu(ttpa)(pim)]·H2O}n (1) was synthesized and characterized by EA, IR, X-ray powder diffraction, optical band gaps, VB XPS spectra and luminescence (ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, pim = pimelate). 1 exhibits the 3D pcu topology containing the [Cu2(COO)4] dimer building block. Eg, Ev and Ec of 1 were 2.37, 1.64 and -0.73 eV, respectively. MOF 1 exhibits a highly photocatalytic efficiency for the degradation of methylene blue and rhodamine B by visible light irradiation. The photocatalyst 1 is very stable after photocatalytic experiment and can be reused for at least five times. The photocatalytic mechanism was detailedly assumed and confirmed by the photocatalytic reaction in the presence of the hydroxyl radical scavenger mannitol and trapping agent 1,4-benzenedicarbolic acid.
Collapse
Affiliation(s)
- Lin-Lu Qian
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhi-Xiang Wang
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Li-Ming Zhu
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ke Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bao-Long Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Bing Wu
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
11
|
Li JX, Liu D, Qin ZB, Dong GY. Sonochemical synthesis of two nano-sized nickel(II) coordination polymers derived from flexible bis(benzimidazole) and isophthalic acid ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Zhao XX, Liu D, Li YH, Cui GH. Two 3D cadmium(II) coordination polymers modulated by flexible bis(benzimidazole) ligands displaying high photocatalytic activities for degradation of methylene blue and methyl orange. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Loukopoulos E, Abdul-Sada A, Csire G, Kállay C, Brookfield A, Tizzard GJ, Coles SJ, Lykakis IN, Kostakis GE. Copper(ii)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study. Dalton Trans 2018; 47:10491-10508. [PMID: 29796447 DOI: 10.1039/c8dt01256c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This diagnostic study aims to shed light on the catalytic activity of a library of Cu(ii) based coordination compounds with benzotriazole-based ligands. We report herein the synthesis and characterization of five new coordination compounds formulated as [CuII(L4)(MeCN)2(CF3SO3)2] (1), [CuII(L5)2(CF3SO3)2] (2), [CuII(L6)2(MeCN)(CF3SO3)]·(CF3SO3) (3), [CuII(L6)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (4), and [Cu(L1)2(L1')2(CF3SO3)2]2·4(CF3SO3)·8(Me2CO) (5), derived from similar nitrogen-based ligands. The homogeneous catalytic activity of these compounds along with our previously reported coordination compounds (6-13), derived from similar ligands, is tested against the well-known Cu(i)-catalysed azide-alkyne cycloaddition reaction. The optimal catalyst [CuII(L1)2(CF3SO3)2] (10) activates the reaction to afford 1,4-disubstituted 1,2,3-triazoles with yields up to 98% and without requiring a reducing agent. Various control experiments are performed to optimize the method and examine parameters such as ligand variation, metal coordination geometry and environment, in order to elucidate the behaviour of the catalytic system.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Alaa Abdul-Sada
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Gizella Csire
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adam Brookfield
- School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, SO1 71BJ, UK
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|