1
|
Liu M, Shen R, Wang L, Yang X, Zhang L, Ma X, He L, Li A, Kong X, Shi H. Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol. Foods 2024; 13:1506. [PMID: 38790806 PMCID: PMC11120539 DOI: 10.3390/foods13101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study is to produce a biodegradable food packaging material that reduces environmental pollution and protects food safety. The effects of total solids content, substrate ratio, polyphenol content, and magnetic stirring time on bovine bone gelatin/sodium carboxymethylcellulose nanoemulsion (BBG/SCMC-NE) were investigated using particle size, PDI, turbidity, rheological properties, and zeta potential as evaluation indexes. The micro, structural, antioxidant, encapsulation, and release properties were characterized after deriving its optimal preparation process. The results showed that the nanoemulsion was optimally prepared with a total solids content of 2%, a substrate ratio of 9:1, a polyphenol content of 0.2%, and a magnetic stirring time of 60 min. SEM showed that the nanoemulsion showed a dense and uniform reticulated structure. FTIR and XRD results showed that covalent cross-linking of proteins and polysaccharides altered the structure of gelatin molecular chains to a more compact form but did not change its semi-crystalline structure. DSC showed that the 9:1 BBG/SCMC-NE had a higher thermal denaturation temperature and greater thermal stability, and its DPPH scavenging rate could reach 79.25% and encapsulation rate up to 90.88%, with excellent slow-release performance. The results of the study provide basic guidance for the preparation of stable active food packaging with excellent properties.
Collapse
Affiliation(s)
- Mengying Liu
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Liyuan Wang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Long He
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Aixia Li
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; (M.L.); (R.S.); (L.W.); (X.Y.); (X.M.); (L.H.); (A.L.)
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 810200, China;
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Hezuo 746300, China;
| |
Collapse
|
2
|
Wang Y, Kang H, Hu J, Chen H, Zhou H, Wang Y, Ke H. Preparation of metal-organic framework combined with Portulaca oleracea L. extract electrostatically spun nanofiber membranes delayed release wound dressing. RSC Adv 2023; 13:21633-21642. [PMID: 37476048 PMCID: PMC10354497 DOI: 10.1039/d3ra01777j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we prepared a polyacrylonitrile (PAN) composite nanofiber membrane comprising Portulaca oleracea L. extract (POE) and a zinc-based metal-organic framework (MOF) by an in situ growth method as a potentially new type of wound dressing with a slow drug-release effect, to solve the problem of the burst release of drugs in wound dressings. The effects of the MOF and POE doping on the nanofiber membranes were examined using scanning electron microscopy (SEM) and FTIR spectroscopy. SEM analysis revealed the dense and uniform attachment of MOF particles to the surface of the nanofiber membrane, while FTIR spectroscopy confirmed the successful fusion of MOF and POE. Furthermore, investigations into the water contact angle and swelling property demonstrated that the incorporation of the MOF and POE enhanced the hydrophilicity of the material. The results of the in vitro release test showed that the cumulative release rate for PAN/MOF/POE60 decreased from 66.5 ± 2.34% to 32.18 ± 1.31% in the initial 4 h and from 90.54 ± 0.79% to 65.92 ± 1.95% in 72 h compared to PAN/POE, indicating a slowing down of the drug release. In addition, the antimicrobial properties of the fiber membranes were evaluated by the disc diffusion method, and it was evident that the PAN/MOF/POE nanofibers exhibited strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antioxidant properties of the nanofiber membranes loaded with POE were further validated through the DPPH radical scavenging test. These findings highlight the potential application of the developed nanofiber membranes in wound dressings, offering controlled and sustained drug-release capabilities.
Collapse
Affiliation(s)
- Yize Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Hua Kang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Jao Hu
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Heming Chen
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Ying Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huizhen Ke
- Fujian Engineering Research Center for Textile and Clothing, Faculty of Clothing and Design, Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University Fuzhou 350108 Fujian China
| |
Collapse
|
3
|
Govindaraj M, Suresh M, Palaniyandi T, Viswanathan S, Wahab MRA, Baskar G, Surendran H, Ravi M, Sivaji A. Bio-fabrication of gold nanoparticles from brown seaweeds for anticancer activity against glioblastoma through invitro and molecular docking approaches. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Losev VN, Buiko OV, Didukh-Shadrina SL, Shimanskii AF, Zhizhaev AM. Germanium(IV) Adsorption by Inorganic Oxides Modified Layer-by-Layer with Polyhexamethylene Guanidine and Tiron. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622090078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Rana M, Fatima A, Siddiqui N, Ahmedi S, Dar SH, Manzoor N, Javed S, Rahisuddin. Carbothioamide Based Pyrazoline Derivative: Synthesis, Single Crystal Structure, DFT/TD-DFT, Hirshfeld Surface Analysis and Biological Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Aysha Fatima
- S.O.S in Chemistry, Jiwaji University, Gwalior, India
| | | | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Saleem Javed
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Electrochemical Methodologies for Investigating the Antioxidant Potential of Plant and Fruit Extracts: A Review. Antioxidants (Basel) 2022; 11:antiox11061205. [PMID: 35740101 PMCID: PMC9220340 DOI: 10.3390/antiox11061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the growing research interests in the applications of plant and fruit extracts (synthetic/stabilization materials for the nanomaterials, medicinal applications, functional foods, and nutraceuticals) have led to the development of new analytical techniques to be utilized for identifying numerous properties of these extracts. One of the main properties essential for the applicability of these plant extracts is the antioxidant capacity (AOC) that is conventionally determined by spectrophotometric techniques. Nowadays, electrochemical methodologies are emerging as alternative tools for quantifying this particular property of the extract. These methodologies address numerous drawbacks of the conventional spectroscopic approach, such as the utilization of expensive and hazardous solvents, extensive sample pre-treatment requirements, long reaction times, low sensitivity, etc. The electrochemical methodologies discussed in this review include cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV), and chronoamperometry (CAP). This review presents a critical comparison between both the conventional and electrochemical approaches for the quantification of the parameter of AOC and discusses the numerous applications of the obtained bioextracts based on the AOC parameter.
Collapse
|
7
|
Martakov IS, Shevchenko OG, Torlopov MA, Sitnikov PA. Colloidally Stable Conjugates of Phenolic Acids with γ-AlOOH Nanoparticles as Efficient and Biocompatible Nanoantioxidants. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wei J, Liang Q, Guo Y, Zhang W, Wu L. A Deep Insight in the Antioxidant Property of Carnosic Acid: From Computational Study to Experimental Analysis. Foods 2021; 10:2279. [PMID: 34681327 PMCID: PMC8534978 DOI: 10.3390/foods10102279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Since the deep cause for the anti-oxidation of carnosic acid (CA) against oleic acid (OA) remains unclear, we focused on exploring the CA inhibition mechanism via a combined experimental and computational study. Atomic charge, total molecular energy, phenolic hydroxyl bond dissociation enthalpy (BDE), the highest occupied molecular orbital (HOMO), and the lowest unoccupied orbital (LUMO) energy were first discussed by the B3LYP/6-31G (d,p) level, a density functional method. A one-step hydrogen atom transfer (HAT) was proposed for the anti-oxidation of CA towards OA, and the Rancimat method was carried out for analyzing the thermal oxidation stability. The results indicate that the two phenolic hydroxyl groups located at C7(O15) and C8(O18) of CA exert the highest activity, and the chemical reaction heat is minimal when HAT occurs. Consequently, the activity of C7(O15) (303.27 kJ/mol) is slightly lower than that of C8(O18) (295.63 kJ/mol), while the dissociation enthalpy of phenol hydroxyl groups is much lower than those of α-CH2 bond of OA (C8, 353.92 kJ/mol; C11, 353.72 kJ/mol). Rancimat method and non-isothermal differential scanning calorimetry (DSC) demonstrate that CA outcompetes tertiary butylhydroquinone (TBHQ), a synthetic food grade antioxidant, both in prolonging the oxidation induction period and reducing the reaction rate of OA. The Ea (apparent activation energies of reaction) of OA, TBHQ + OA, and CA + OA were 50.59, 57.32 and 66.29 kJ/mol, revealing that CA could improve the Ea and thermal oxidation stability of OA.
Collapse
Affiliation(s)
- Jing Wei
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, 285 Nanhai Road, Haikou 570314, China
| | - Qian Liang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
| | - Yuxin Guo
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
| | - Weimin Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, 285 Nanhai Road, Haikou 570314, China
| | - Long Wu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
9
|
Alidoust S, Zamani M, Jabbari M. Adsorption of free radical TEMPO onto Al 2O 3 nanoparticles and evaluation of radical scavenging activity. Free Radic Res 2021; 55:937-949. [PMID: 34525892 DOI: 10.1080/10715762.2021.1981543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study describes the adsorption of free radical TEMPO onto Al2O3 nanoparticles in the solvents with different polarities including DMF, methanol, acetone, THF, petroleum ether and n-hexane at ambient temperature to evaluate the radical scavenging activity. The adsorption percentage of radical is calculated by measuring the maximum adsorption intensity of the ultraviolet (UV) absorption spectrum of TEMPO in the presence and the absence of Al2O3 nanoparticles. The morphology of Al2O3 nanoparticles before and after adsorption of TEMPO is studied using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy. The adsorption energy and other thermochemical data for the adsorption of TEMPO over different active sites of Al2O3 are estimated via dispersion corrected density functional theory (DFT + Disp). The donor-acceptor interactions between Al2O3 and TEMPO are calculated using natural bond orbital (NBO) theory. It is found that Al2O3 nanoparticles have efficient radical scavenging activity (RSA) in the range of 50-72%. Approximately, a linear relationship between dielectric constant of solvent and the absorption percentage of TEMPO over Al2O3 nanoparticles is achieved. So that with decreasing the polarity of solvent, the adsorption of TEMPO onto Al2O3 nanoparticles is increased. The adsorption of TEMPO over Lewis acidic sites of Al2O3 is more favored than Brønsted acidic and basic sites. The comparison between experimental and calculated IR spectra of TEMPO/Al2O3 complexes provides the good evidence for adsorption of TEMPO onto the surface of Al2O3 nanoparticles.
Collapse
Affiliation(s)
- Soheyl Alidoust
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| | - Mehdi Zamani
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| | - Morteza Jabbari
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| |
Collapse
|
10
|
Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, Han T. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol 2021; 184:946-954. [PMID: 34182000 DOI: 10.1016/j.ijbiomac.2021.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Polysaccharides are macromolecules obtained from a wide range of sources and are known to have diverse biological activities. The biological activities of polysaccharides depend on their structure and physicochemical properties, including water solubility, monosaccharide composition, degree of branching, molecular structure, and molecular weight. Phosphorylation is a commonly used chemical modification method that improves the physicochemical properties of native polysaccharides, thus enhancing their biological activity, or even imparting novel biological activity. Therefore, phosphorylated polysaccharides have attracted increasing attention owing to their antioxidant, antitumor, antiviral, immunomodulatory, and hepatoprotective effects. In this review, we have discussed recent advances in the phosphorylation of polysaccharides, and the methods used for phosphorylation, structural characterization, and determination of biological activities, to provide a theoretical basis for the use of polysaccharides. The structure-activity relationship of phosphorylated polysaccharides and their use in the food and pharmaceutical industries needs to be further studied.
Collapse
Affiliation(s)
- Shunli Xia
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Yongcong Zhai
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xue Wang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Qirui Fan
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Xiaoyi Dong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Mei Chen
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China
| | - Tao Han
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, PR China; Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Kamsuwan T, Jongsomjit B, Herrera JE. The role of ruthenium on the acidity of mixed alumina and silica phases and its impact on activity for ethanol dehydration. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanutporn Kamsuwan
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University Bangkok Thailand
| | - Bunjerd Jongsomjit
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University Bangkok Thailand
| | - José E. Herrera
- Department of Chemical and Biochemical Engineering Western University London Ontario Canada
| |
Collapse
|
12
|
de Menezes BB, Frescura LM, Duarte R, Villetti MA, da Rosa MB. A critical examination of the DPPH method: Mistakes and inconsistencies in stoichiometry and IC 50 determination by UV-Vis spectroscopy. Anal Chim Acta 2021; 1157:338398. [PMID: 33832588 DOI: 10.1016/j.aca.2021.338398] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The DPPH method has been reported with misconceptions in a large number of studies, thus precluding comparison of results. Attention is drawn to a common mistake in the unit used to express the IC50 of ascorbic acid and other antioxidant substances. Concentration of the antioxidant is widely misused with a total disregard for the DPPH• concentration, while the molar ratio of antioxidant/DPPH• would be the correct choice. Data from 26 studies with widely varying IC50 values were renormalized according to reaction stoichiometry, resulting in values which are more coherent and closer to the ideal one of 0.25 for at least 15 of them. In addition, the model which is currently being used to calculate the DPPH• concentration can lead to an overestimation of around 7%, as it does not take into account the small contribution of the reaction product. In view of that, we present a mathematical model to correct the overestimation of the DPPH• concentration.
Collapse
Affiliation(s)
- Bryan Brummelhaus de Menezes
- Federal University of Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Lucas Mironuk Frescura
- Federal University of Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Rafael Duarte
- Federal University of Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Marcos Antonio Villetti
- Federal University of Santa Maria - UFSM, Department of Physics, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Marcelo Barcellos da Rosa
- Federal University of Santa Maria - UFSM, Department of Chemistry, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation. Catalysts 2021. [DOI: 10.3390/catal11030353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to reduce greenhouse gas emissions, which are reaching alarming levels in the atmosphere, capture, recovery, and transformation of carbon dioxide emitted to methane is considered a potentially profitable process. This transformation, known as methanation, is a catalytic reaction that mainly uses catalysts based on noble metals such as Ru and, although with less efficiency, on transition metals such as Ni. In order to improve the efficiency of these conventional catalysts, the effect of adding alkaline earth metals (Ba, Ca, or Mg at 10 wt%) and lanthanides (La or Ce at 14 wt%) to nickel (13 wt%), ruthenium (1 wt%), or both-based catalysts has been studied at temperatures between 498 and 773 K and 10 bar pressure. The deactivation resistance in presence of H2S was also monitored. The incorporation of La into the catalyst produces interactions between active metal Ni, Ru, or Ru-Ni and the alumina support, as determined by the characterization. This fact results in an improvement in the catalytic activity of the 13Ni/Al2O3 catalyst, which achieves a methane yield of 82% at 680 K for 13Ni/14La-Al2O3, in addition to an increase in H2S deactivation resistance. Furthermore, 89% was achieved for 1Ru-13Ni/14La-Al2O3 at 651 K, but it showed to be more vulnerable to H2S presence.
Collapse
|
14
|
Synthesis and enhanced antioxidant and membrane-protective activity of curcumin@AlOOH nanoparticles. J Inorg Biochem 2020; 210:111168. [DOI: 10.1016/j.jinorgbio.2020.111168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
|
15
|
Zhang X, Liu C, Tian W, Zhang H, Li P, Wang J, He W. Theoretical and experimental investigation of the antioxidative activity of monascin. Food Funct 2020; 11:5915-5923. [PMID: 32584351 DOI: 10.1039/c9fo02410g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monascin, a specific type of monascus pigments, exhibits many bioactivities. In this study, the antioxidative activity of monascin was investigated by theoretical and experimental methods. First, the antioxidant potential of six monascus pigments was predicted by density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31+G (d, p) level, and monascus yellow pigments were predicted to have strong antioxidant capacity, as they can transfer hydrogen to free radicals and accept electrons from radicals. Then, the free radical-scavenging capacity of monascin for 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, and hydroxyl radicals was experimentally validated by electron spin resonance (ESR) measurement. Monascin exhibited a quenching effect on DPPH, superoxide, and hydroxyl radicals in a dose-dependent manner. Specifically, the scavenging activity of monascin for DPPH, superoxide, and hydroxyl radicals was 97.5%, 59.5%, and 68.6%, respectively, when 0.1 mg mL-1 monascin was present. Our study provides theoretical evidence for the strong antioxidative activity of monascin and offers a simple and reliable strategy to determine the antioxidative activity.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Food and Bioengineering College, Xuchang University, Henan 461000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Siyamak Shahab, Masoome Sheikhi. Antioxidant Properties of the Phorbol: A DFT Approach. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793120010145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Zubair M, Sirajuddin M, Ullah K, Haider A, Perveen F, Hussain I, Ali S, Tahir MN. Synthesis, structural peculiarities, theoretical study and biological evaluation of newly designed O-Vanillin based azomethines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Méndez-Mateos D, Barrio VL, Requies JM, Cambra JF. A study of deactivation by H2S and regeneration of a Ni catalyst supported on Al2O3, during methanation of CO2. Effect of the promoters Co, Cr, Fe and Mo. RSC Adv 2020; 10:16551-16564. [PMID: 35498864 PMCID: PMC9053060 DOI: 10.1039/d0ra00882f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Energy storage from renewable sources is possible by chemical procedures, power to gas technology being a possible solution for long-term storage. In this work, CO2 methanation from a sulphur containing gas was studied, taking into account deactivation of the catalysts and a regeneration process. In order to improve the sulphur resistance of a standard nickel (13%) catalyst supported on alumina, transition metals like molybdenum (Mo), iron (Fe), cobalt (Co) or chromium (Cr), in different proportions (from 4 to 8 wt%) were added to the catalyst formulation. The catalyst activity, between 573 and 773 K, at 10 bar, increased when transition metals were added except for Mo in the highest proportion. These bimetallic catalysts presented a similar deactivation resistance than the monometallic catalyst when sulphur was present in the feed. Once H2S was removed from the feed, and the catalysts regenerated with oxygen, only the catalyst containing cobalt recovered up to a 13% methane yield. Energy storage from renewable sources is possible by chemical procedures, power to gas technology being a possible solution for long-term storage.![]()
Collapse
|
19
|
Wei L, Wu S, Shi W, Aldrich AL, Kielian T, Carlson MA, Sun R, Qin X, Duan B. Large-Scale and Rapid Preparation of Nanofibrous Meshes and Their Application for Drug-Loaded Multilayer Mucoadhesive Patch Fabrication for Mouth Ulcer Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28740-28751. [PMID: 31334627 PMCID: PMC7082812 DOI: 10.1021/acsami.9b10379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrospinning provides a simple and convenient method to fabricate nanofibrous meshes. However, the nanofiber productivity is often limited to the laboratory scale, which cannot satisfy the requirements of practical application. In this study, we developed a novel needleless electrospinning spinneret based on a double-ring slit to fabricate drug-loaded nanofibrous meshes. In contrast to the conventional single-needle electrospinning spinneret, our needless spinneret can significantly improve nanofiber productivity due to the simultaneous formation of multiple jets during electrospinning. Curcumin-loaded poly(l-lactic acid) (PLLA) nanofiber meshes with various concentrations and on the large scale were manufactured by employing our developed needleless spinneret-based electrospinning device. We systematically investigated the drug release behaviors, antioxidant properties, anti-inflammatory attributes, and cytotoxicity of the curcumin-loaded PLLA nanofibrous meshes. Furthermore, a bilayer nanofibrous composite mesh was successfully generated by electrospinning curcumin-loaded PLLA solution and diclofenac sodium loaded poly(ethylene oxide) solution in a predetermined time sequence, which revealed potent antibacterial properties. Subsequently, novel mucoadhesive patches were assembled by combining the bilayer composite nanofibrous meshes with (hydroxypropyl)methyl cellulose based mucoadhesive film. The multilayered mucoadhesive patch has excellent adhesion properties on the porcine buccal mucosa. Overall, our double-ring slit spinneret can provide a novel method to rapidly produce large-scale drug-loaded nanofibrous meshes to fabricate mucoadhesive patches. The multiple-layered mucoadhesive patches enable the incorporation of multiple drugs with different targets of action, such as analgesic, anti-inflammatory, and antimicrobial compounds, for mouth ulcer or other oral disease treatments.
Collapse
Affiliation(s)
- Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amy L. Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mark A. Carlson
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68516, USA
| |
Collapse
|
20
|
Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechin gallate. Int J Biol Macromol 2019; 134:1038-1044. [DOI: 10.1016/j.ijbiomac.2019.05.143] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
|
21
|
Baskaran XR, Vigila AVG, Rajan K, Zhang S, Liao W. Free Radical Scavenging and Some Pharmaceutical Utilities of Nanoparticles in the Recent Scenario. Curr Pharm Des 2019; 25:2677-2693. [PMID: 31333102 DOI: 10.2174/1381612825666190716110330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanopharmaceuticals have rapidly emerged as a means to cure several diseases. There are numerous reports describing the development and application of nanopharmaceuticals. Here, we discussed nanoparticle synthesis and the mechanisms to scavenge free radicals. We also discuss their major properties and list several commercially available nanomedicines. RESULTS Reactive oxygen and hydrogen species are formed during normal metabolism, and excessive reactive species can damage proteins, lipids, and DNA and cause disease. Plant- and microbe-based nanoparticles, which can protect tissues from free radical damage, have recently gained research momentum because they are inexpensive and safe. CONCLUSION Synthetic and biocompatible nanoparticles exhibit antioxidant, antidiabetic, anti-inflammatory, and anticancer properties, which can be used to treat several diseases. Further studies are needed to investigate their sizes, dose-dependent activities, and mechanisms of action.
Collapse
Affiliation(s)
- Xavier-Ravi Baskaran
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510 275, China.,Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518 004, China
| | - Antony-Varuvel G Vigila
- Department of Zoology, St. Xavier's College, Palayamkottai 627 002, Tamil Nadu, India.,Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India
| | - Kilimas Rajan
- Department of Botany, St. Joseph's College, Tiruchirappalli 620 002, Tamil Nadu, India
| | - Shouzhou Zhang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518 004, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510 275, China
| |
Collapse
|
22
|
Vinay SP, Udayabhanu, Nagaraju G, Chandrappa CP, Chandrasekhar N. Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01598-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Ji Z, Sheardy A, Zeng Z, Zhang W, Chevva H, Allado K, Yin Z, Wei J. Tuning the Functional Groups on Carbon Nanodots and Antioxidant Studies. Molecules 2019; 24:E152. [PMID: 30609752 PMCID: PMC6337175 DOI: 10.3390/molecules24010152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
Carbon nanodots (CNDs) have shown good antioxidant capabilities by scavenging oxidant free radicals such as diphenyl-1-picrylhydrazyl radical (DPPH•) and reactive oxygen species. While some studies suggest that the antioxidation activities associate to the proton donor role of surface active groups like carboxyl groups (⁻COOH), it is unclear how exactly the extent of oxidant scavenging potential and its related mechanisms are influenced by functional groups on CNDs' surfaces. In this work, carboxyl and the amino functional groups on CNDs' surfaces are modified to investigate the individual influence of intermolecular interactions with DPPH• free radical by UV-Vis spectroscopy and electrochemistry. The results suggest that both the carboxyl and the amino groups contribute to the antioxidation activity of CNDs through either a direct or indirect hydrogen atom transfer reaction with DPPH•.
Collapse
Affiliation(s)
- Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Alex Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Harish Chevva
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Kokougan Allado
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| |
Collapse
|