1
|
Contessa CR, Moreira EC, Moraes CC, de Medeiros Burkert JF. Production and SERS characterization of bacteriocin-like inhibitory substances by latilactobacillus sakei in whey permeate powder: exploring natural antibacterial potential. Bioprocess Biosyst Eng 2024; 47:1723-1734. [PMID: 39014172 DOI: 10.1007/s00449-024-03065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Bacteriocins are antimicrobial compounds that have awakened interest across several industries due to their effectiveness. However, their large-scale production often becomes unfeasible on an industrial scale, primarily because of high process costs. Addressing this challenge, this work analyzes the potential of using low-cost whey permeate powder, without any supplementation, to produce bacteriocin-like inhibitory substances (BLIS) through the fermentation of Latilactobacillus sakei. For this purpose, different concentrations of whey permeate powder (55.15 gL-1, 41.3 gL-1 and 27.5 gL-1) were used. The ability of L. sakei to produce BLIS was evaluated, as well as the potential of crude cell-free supernatant to act as a preservative. Raman spectroscopy and surface-enhanced Raman scattering (SERS) provided detailed insights into the composition and changes occurring during fermentation. SERS, in particular, enhanced peak definition significantly, allowing for the identification of key components, such as lactose, proteins, and phenylalanine, which are crucial in understanding the fermentation process and BLIS characteristics. The results revealed that the concentration of 55.15 gL-1 of whey permeate powder, in flasks without agitation and a culture temperature of 32.5 °C, presented the highest biological activity of BLIS, reaching 99% of inhibition of Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 36-45%, respectively. BLIS production began within 60 h of cultivation and was associated with class II bacteriocins. The results demonstrate a promising approach for producing BLIS in an economical and environmentally sustainable manner, with potential implications for various industries.
Collapse
Affiliation(s)
- Camila Ramão Contessa
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil.
| | - Eduardo Ceretta Moreira
- Science and Engineering of Materials Graduate Program, Spectroscopy Laboratory, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Caroline Costa Moraes
- Science and Engineering of Materials Graduate Program, Laboratory of Microbiology and Food Toxicology, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Janaína Fernandes de Medeiros Burkert
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
2
|
Zhang M, Liu J, Gao Y, Zhao B, Xu ML, Zhang T. Se site targeted-two circles antioxidant in GPx4-like catalytic peroxide degradation by polyphenols (-)-epigallocatechin gallate and genistein using SERS. Food Chem X 2024; 22:101387. [PMID: 38665629 PMCID: PMC11043887 DOI: 10.1016/j.fochx.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A Se site targeted-two circles antioxidant of polyphenols EGCG and genistein in glutathione peroxidase 4 (GPx4)-like catalytic peroxide H2O2 and cumene hydroperoxide degradation was demonstrated by surface-enhanced Raman scattering (SERS). Se atom's active center is presenting a 'low-oxidation' and a 'high-oxidation' catalytic cycle. The former is oxidized to selenenic acid (SeO-) with a Raman bond at 619/ 610 cm-1 assigned to the νO - Se by the hydroperoxide substrate at 544/ 551 cm-1 assigned to ωHSeC decreased. Under oxidative stress, the enzyme shifted to 'high-oxidation' catalytic cycle, in which GPx4 shuttles between R-SeO- and R-SeOO- with a Raman intensity of bond at 840/ 860 cm-1 assigned to νO[bond, double bond]Se. EGCG could act as a reducing agent both in H2O2 and Cu-OOH degradation, while, genistein can only reduce Cu-OOH, because it binds more readily to the selenium site in GPx4 than EGCG with a closer proximity, therefore may affect its simultaneous binding to coenzymes.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Meng-Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/ College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
3
|
Hu ZY, Wang WJ, Hu L, Shi JH, Jiang SL. Comprehending the intermolecular interaction of dacomitinib with bovine serum albumin: experimental and theoretical approaches. J Biomol Struct Dyn 2024; 42:3579-3592. [PMID: 37288787 DOI: 10.1080/07391102.2023.2218926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Dacomitinib (DAC), as a member of tyrosine kinase inhibitors is primarily used to treat non-small cell lung cancer. The intermolecular interaction between DAC and bovine serum albumin (BSA) was comprehended with the help of experiments and theoretical simulations. The outcomes indicated that DAC quenched the endogenous fluorescence of BSA through static quenching mode. In the binding process, DAC was preferentially inserted into the hydrophobic cavity of BSA subdomain IA (site III), and a fluorescence-free DAC-BSA complex with molar ratio of 1:1 was generated. The outcomes confirmed that DAC had a stronger affinity on BSA and the non-radiative energy transfer occurred in the combination process of two. And, it can be inferred from the outcomes of thermodynamic parameters and competition experiments with 8-aniline-1-naphthalenesulfonic acid (ANS) and D-(+)- sucrose that hydrogen bonds (H-bonds), van der Waals forces (vdW) and hydrophobic forces had a significant impact in inserting DAC into the hydrophobic cavity of BSA. The outcomes from multi-spectroscopic measurements that DAC could affect the secondary structure of BSA, that was, α-helix content decreased slightly from 51.0% to 49.7%. Moreover, the combination of DAC and BSA led to a reduction in the hydrophobicity of the microenvironment around tyrosine (Tyr) residues in BSA while had little influence on the microenvironment of around tryptophan (Trp) residues. The outcomes from molecular docking and molecular dynamics (MD) simulation further demonstrated the insertion of DAC into site III of BSA and hydrogen energy and van der Waals energy were the dominant energy of DAC-BSA stability. In addition, the influence of metal ions (Fe3+, Cu2+, Co2+, etc.) on the affinity of the system was explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Zhuang H, Zhang X, Wu S, Yong P, Niu X. Complexation study of syringaldehyde complexed with serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123533. [PMID: 37871524 DOI: 10.1016/j.saa.2023.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
As a major flavonoid polyphenolic compound in the stem of Hibiscus taiwanensis, syringaldehyde (SA) has numerous pharmacological effects. Nevertheless, owing to its less in-depth study, its application is limited. Within this work, the interactions between serum albumin and SA were elucidated by multispectral studies. The results of ultraviolet/visible absorption spectroscopy suggest that the conformation of serum albumin can be altered by binding with SA. Fluorescence spectroscopy indicates that SA forms complexes with serum albumin, quenching its fluorescence. This suggests that the fluorescent residues of serum albumin are situated at or near the binding site. Additionally, FT-IR results confirm that SA alters the secondary structure of BSA, specifically affecting the positions of both amide I and amide II bands. Via the computational biology analyses, it was confirmed that SA binds at the active site of serum albumin and nine residues form hydrophobic interactions. In addition, the cytotoxicity of SA to BRL-3A cells was also studied, and SA had almost no toxicity to the growth of BRL-3A cells. The complex has a higher α-amylase inhibition capacity than SA alone. To sum up, this work reveals that the interaction of SA with BSA induces a conformational alteration in BSA. It also proved that SA inhibits α-amylase more significantly and has great potential in hypoglycemia.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
6
|
Qiu X, Gu J, Yang T, Ma C, Li L, Wu Y, Zhu C, Gao H, Yang Z, Wang Z, Li X, Hu A, Xu J, Zhong L, Shen J, Huang A, Chen G. Sensitive determination of Norfloxacin in milk based on β-cyclodextrin functionalized silver nanoparticles SERS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121212. [PMID: 35413530 DOI: 10.1016/j.saa.2022.121212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The norfloxacin (NFX) residue in milk will increase human resistance to drugs and pose a threat to public health. In this work, a highly sensitive method for detection of NFX was developed based on surface enhanced Raman spectroscopy (SERS) using β-cyclodextrin functionalized silver nanoparticles (β-CD-AgNPs) as substrate. The unique spatial size and hydrophilicity of β-CD on the surface of AgNPs could selectively capture the target molecule (NFX) through some weak interactions, including hydrogen-bond interaction, electrostatic interaction, etc. The interactions were characterized by the UV-Vis absorption spectroscopy, fluorescence spectroscopy, Zeta potential and DLS. The Raman signal of NFX is largely enhanced when anchored by β-CD on the surface of AgNPs due to SERS effect. Through a series of experiments and analysis, the limit of detection (LOD) in standard solution and spiked milk were calculated to be 3.214 pmol/L and 5.327 nmol/L. The correlation coefficients (R2) were 0.986 and 0.984, respectively. For milk sample determination of NFX, the recovery was 101.29% to 104.00% with the relative standard deviation (RSD) from 2.986% to 9.136%. To sum up, this developed SERS strategy is sensitive and specific to detect NFX in milk, it has practical application value and prospects.
Collapse
Affiliation(s)
- Xiaoqian Qiu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Jiao Gu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Lei Li
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Yamin Wu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Chun Zhu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Hui Gao
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Zichen Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China; School of Internet of Things Engineering, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China
| | - Zirui Wang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Xiaolin Li
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Anqi Hu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Jinzeng Xu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Lvyuan Zhong
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Jialu Shen
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Anlan Huang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China.
| |
Collapse
|
7
|
Probing the biomolecular (DNA/BSA) interaction by new Pd(II) complex via in-depth experimental and computational perspectives: synthesis, characterization, cytotoxicity, and DFT approach. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC8874310 DOI: 10.1007/s13738-022-02519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Scientists should not forget that the rate of death as a result of cancer is far more than that of other diseases like influenza or coronavirus (COVID-19), so the research in this field is of cardinal significance. Therefore, a new and hydrophilic palladium(II) complex of the general formula [Pd(bpy)(proli-dtc)]NO3, in which bpy and proli-dtc are 2,2'-bipyridine and pyrroline dithiocarbamate ligands, respectively, was synthesized and characterized utilizing spectral and analytical procedures. Density functional theory (DFT) calculation was also performed with B3LYP method in the gas phase. The DFT and spectral analysis specified that the Pd(II) atom is found in a square-planar geometry. HOMO/LUMO analysis, quantum chemical parameters and MEP surface of the complex were investigated to acquire an intuition about the nature of the compound. Partition coefficient and water solubility determination showed that both lipophilicity and hydrophilicity of the compound are more than cisplatin. The 50% inhibition concentration (IC50) value was evaluated against K562 cancer cells, the obtained result has revealed a promising cytotoxic effect. DNA and BSA binding of the complex were explored through multi-spectroscopic (UV–Vis, fluorescence, FRET, and CD) and non-spectroscopic (gel electrophoresis, viscosity and docking simulation) techniques. The obtained findings demonstrated that the complex strongly interacts with CT-DNA by hydrophobic interactions and possesses medium interaction with BSA via hydrogen bond and van der Waals forces, thus BSA could efficiently carry out complex transportation. Furthermore, the results of docking simulation agree well with the experimental findings. In conclusion, the new Pd(II) complex has cytotoxic activity and could interact with DNA and BSA effectively.
Collapse
|
8
|
Vinod SM, Sangeetha MS, Thamarai Selvan R, Shoba G, Tamizhdurai P, Kumaran R. Molecular docking approach on the molecular interactions involving beta-lactoglobulin (βLG)-4-Dicyanomethylene2,6-Dimethyl-4-Hpyran (DDP) dye in the presence of an antibiotic, norfloxacin. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Jing PP, Li YX, Su YH, Liang WL, Leng YX. The role of metal ions in the behavior of bovine serum albumin molecules under physiological environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120604. [PMID: 34802930 DOI: 10.1016/j.saa.2021.120604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Metal ions released from metallic implants can affect the conformation and structural stability of proteins in biological fluids, which eventually affects the biocompatibility of implants. The present study aimed at understanding the interactions between the metal ions (Mn2+, Fe2+, Fe3+, Co2+, Cu2+, and Zn2+) and bovine serum albumin (BSA) molecules in physiological context. The structural information of BSA molecules and the microenvironment of functional groups were investigated using UV, Raman, and circular dichroism spectroscopy. The results revealed that addition of Fe3+, Fe2+, and Cu2+ ions alters the tertiary structure of BSA molecules and exposes the aromatic heterocyclic hydrophobic group of BSA amino acid residues. The addition of Fe3+ and Cu2+ ions results in increased viscosity and decreased intensity of the water peak in the BSA solution. Furthermore, Fe3+ and Cu2+ ions evidently promote the α-helix to β-sheet transformation of BSA molecules due to decreased disulfide bond stability. Tryptophan residues of BSA and metal ions containing BSA (Me+/BSA) solutions were found to be in a hydrophilic environment. Moreover, the addition of metal ions to BSA results in several of tyrosine residues acting as hydrogen-bond donors. Coomassie brilliant blue staining revealed that the addition of Cu2+ ions promotes the aggregation of BSA molecules. The findings of this study will be helpful for evaluating the biocompatibility of metallic implants.
Collapse
Affiliation(s)
- P P Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y X Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y H Su
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - W L Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Y X Leng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
10
|
Liu J, Liu W, Zhou SN, Wang DM, Gong ZJ, Fan MK. Free-Standing Membrane Liquid-State Platform for SERS-Based Determination of Norfloxacin in Environmental Samples. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00192-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Li C, Liang Y, Sun Y, Wang W, Zhang J, Zhang T. Elucidation of interaction between serum albumin and ginsenoside CK along with cytotoxic study. Food Chem Toxicol 2021; 155:112403. [PMID: 34246707 DOI: 10.1016/j.fct.2021.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
As a main metabolite of ginsenosides, compound K (CK) has a vast array of pharmacological effects. However, due to its low polarity and insoluble in water, its oral application has been greatly limited. In this work, the interaction between serum albumin and ginsenoside CK was elucidated by multi-spectroscopic studies. The result of ultraviolet/visible absorption spectroscopy showed that the conformation of serum albumin could be changed via binding with CK. The result of fluorescence spectroscopy suggested that CK could form complex with serum albumin. CK could quench the fluorescence and the fluorescence residues of serum albumin were located in or near the binding position. Molecular docking indicated that CK bound at Sudlow's site II of serum albumin and formed hydrogen-bonding interactions with three residues. Furthermore, the flexible side chain of CK was difficult to be stabilized at the binding site, resulting in its serious perturbation during dynamics simulation. This work also performed the cytotoxic study and the result showed that serum albumin enhanced the inhibitory effect of CK on the proliferation of both Caco-2 and HCT-116 cells. To sum up, this work revealed that serum albumin might be an appropriate carrier of hydrophobic compounds, with the advantage of improving their biocompatibility.
Collapse
Affiliation(s)
- Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Wencheng Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
12
|
Shi Y, Wang X, Borhan MS, Young J, Newman D, Berg E, Sun X. A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies. Food Sci Anim Resour 2021; 41:563-588. [PMID: 34291208 PMCID: PMC8277176 DOI: 10.5851/kosfa.2021.e25] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing meat demand in terms of both quality and quantity in conjunction with
feeding a growing population has resulted in regulatory agencies imposing
stringent guidelines on meat quality and safety. Objective and accurate rapid
non-destructive detection methods and evaluation techniques based on artificial
intelligence have become the research hotspot in recent years and have been
widely applied in the meat industry. Therefore, this review surveyed the key
technologies of non-destructive detection for meat quality, mainly including
ultrasonic technology, machine (computer) vision technology, near-infrared
spectroscopy technology, hyperspectral technology, Raman spectra technology, and
electronic nose/tongue. The technical characteristics and evaluation methods
were compared and analyzed; the practical applications of non-destructive
detection technologies in meat quality assessment were explored; and the current
challenges and future research directions were discussed. The literature
presented in this review clearly demonstrate that previous research on
non-destructive technologies are of great significance to ensure
consumers’ urgent demand for high-quality meat by promoting automatic,
real-time inspection and quality control in meat production. In the near future,
with ever-growing application requirements and research developments, it is a
trend to integrate such systems to provide effective solutions for various grain
quality evaluation applications.
Collapse
Affiliation(s)
- Yinyan Shi
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA.,College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Md Saidul Borhan
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Jennifer Young
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - David Newman
- Department of Animal Science, Arkansas State University, Jonesboro, AR 72467, USA
| | - Eric Berg
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Xin Sun
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
13
|
Debia NP, Rodríguez JJ, da Silveira CH, Chaves OA, Iglesias BA, Rodembusch FS, Lüdtke DS. Synthesis and photophysics of benzazole based triazoles with amino acid-derived pendant units. Multiparametric optical sensors for BSA and CT-DNA in solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin. Talanta 2019; 206:120215. [PMID: 31514903 DOI: 10.1016/j.talanta.2019.120215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
Abstract
This article described the fabrication of novel magnetic carbon nanotube modified with polymeric deep eutectic solvent (M-CNT@PDES) and its application as extractant for the magnetic solid phase extraction (MSPE) of bovine serum albumin (BSA). The physicochemical properties and morphology of M-CNT@PDES were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermo-gravimetric analysis (TGA), zeta potentials, fourier transform infrared spectrometry (FT-IR) and transmission electron microscope (TEM). Afterwards, several parameters such as pH value, initial concentration of BSA, extraction time, ionic strength and extraction temperature were optimized. The results indicated that the modification of PDES significantly improved the extraction performance for BSA, and the maximum extraction capacity was 225.15 mg/g under the optimized conditions. In addition, 0.20 mol/L NaCl-PBS solution was chosen as the appropriate eluent, and favourable elution rate (81.22%) was obtained. Circular dichroism spectroscopy (CD) indicated that the secondary structure of BSA has not changed during extraction and elution. The regenerative experiment and application in real calf serum confirmed the outstanding durability and practical application ability of M-CNT@PDES. All of above verified that the proposed M-CNT@PDES coupled with MSPE method has great application potential for the pre-concentration of biomolecules.
Collapse
|