1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Tao Y, Jin Y, Cui Y, Yu T, Ji J, Zhu W, Fang M, Li C. A novel fluorescent probe based on carbazole-thiophene for the recognition of hypochlorite and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123912. [PMID: 38266605 DOI: 10.1016/j.saa.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
A carbazole thiophene-aldehyde and 4-methylbenzenesulfonhydrazide conjugate CSH was synthesized by introducing 5-thiophene aldehyde at the 3-position of the carbazole group as the precursor and then condensing it with 4-methylbenzenesulfonhydrazide. CSH has high selectivity and sensitivity towards ClO-, which can specifically identify ClO- by UV-Vis and fluorescence spectroscopy. CSH can rapidly respond to ClO- in the physiological pH range through a fluorescence quenching pattern, accompanied by the color of CSH changing markedly from turquoise to yellowish green under the 365 nm UV light. Probe CSH exhibits a quantitative response to ClO- (0-11 μM) with a low detection limit (1.16 × 10-6 M). Cell imaging experiments have shown that CSH can capture fluorescent signals in the cyan and yellow channels of HeLa cells through fluorescence confocal microscopy, and can successfully identify exogenous ClO- in HeLa cells. In addition, probe CSH can also be used to detect ClO- in environmental water samples. These results indicate that CSH has potential application prospects in the environmental analysis and biological aspects.
Collapse
Affiliation(s)
- Yana Tao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yu Jin
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yuanyuan Cui
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Taotao Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiayu Ji
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China.
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, PR China
| | - Cun Li
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China; School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
3
|
Banerjee S, Karak A, Halder S, Mandal M, Banik D, Jana K, Mahapatra AK. A small-molecule fluorogenic probe for the detection of hypochlorite and its application in the bio-imaging of human breast cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37318247 DOI: 10.1039/d3ay00646h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A certain amount of hypochlorite can help to regulate the body's defense system while excessive hypochlorite has some complex influence on health. Herein, a thiophene-derived biocompatible turn-on fluorescent probe (TPHZ) was synthesized and characterized for the detection of hypochlorite (ClO-). The fluorescence and colorimetric sensing of the probe followed an ICT OFF strategy. The experimental results showed a remarkable turn on fluorescence enhancement from colorless to bright blue after the addition of ClO- within 130 s in a solvent system having 80% water with high selectivity and a low detection limit of 53.8 nM. The sensing mechanism was attributed to ClO- mediated electrophilic addition to the imine bond which was justified by DFT calculations, and ESI-MS and 1H-NMR titration experiments. The probe was used in an application to visualize ClO- in human breast cancer cells which can be helpful for investigating the functions of hypochlorite in living cells. Finally, by virtue of fine photophysical properties, good sensing performance, good water solubility and low limit of detection, the probe TPHZ was successfully applied to TLC test strips, and commercial bleach and water samples.
Collapse
Affiliation(s)
- Shilpita Banerjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Anirban Karak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700 054, India
| | - Moumi Mandal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700 054, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| |
Collapse
|
4
|
Ma Y, Wu Y, Wang X, Gao G, Zhou X. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9 H)-acridone (DDAO). CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Enbanathan S, Manickam S, Munusamy S, Jothi D, Manoj Kumar S, Kulathu Iyer S. A phenanthridine-based probe for selective detection of hypochlorite ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj06023f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel oxime-based fluorescent chemosensor (E)-2-(4′-(7,8,13,14-tetrahydrodibenzo[a,i]phenanthridin-5-yl)-[1,1′-biphenyl]-4-yl)ethen-1-ol (PBO) has been developed for the fluorimetric detection of hypochlorite ion (OCl−).
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore-632 014, India
| | - Saravanakumar Manickam
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore-632 014, India
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-602 105, Tamil Nadu, India
| | - Sathishkumar Munusamy
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore-632 014, India
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore-632 014, India
| | | |
Collapse
|
6
|
Ruan S, Wu S, Yang L, Li M, Zhang Y, Wang Z, Wang S. A novel turn-on fluorescent probe based on berberine for detecting Hg2+ and ClO− with the different fluorescence signals. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Zeng ZX, Gu J, Liu YN, Li DD, Yang YS, Wang BZ, Zhu HL. A fluorescent sensor for selective detection of hypochlorite and its application in Arabidopsis thaliana. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118830. [PMID: 32858451 DOI: 10.1016/j.saa.2020.118830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Hypochlorite, as one of reactive oxygen species, has drawn much attention due to its essential roles in special biological events and disorders. The exogenous hypochlorite remains a risk for human, animals and plants. In this work, a novel water soluble quinolin-containing nitrone derivative T has been developed for fluorometric sensing hypochlorite. The response mechanism of T towards ClO- was reported for the first time. In comparison with the reported sensors for ClO-, the sensor T in this work exhibited advantages including high selectivity (80 fold over other analytes), rapid response (within 5 s) and lipid-water distribution transformation (LogP from 2.979 to 6.131). Further biological applications suggested that T was capable of monitoring both exogenous and endogenous ClO- in living cells. The imaging in Arabidopsis thaliana indicated that the absorption and transmission of ClO- in plant could be monitored by this sensor through the chlorine-related mechanism. This work might raise referable information for further investigations in the physiological and pathological events in both tumor and plants.
Collapse
Affiliation(s)
- Zi-Xuan Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin Gu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ya-Ni Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dong-Dong Li
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Rapid and sensitive detection of hypochlorite in ~100% aqueous solution using a bithiophene-based fluorescent sensor: Application to water analysis and live-cell imaging. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
A commercially available NIR fluorescence probe for the detection of hypochlorite and its application in cell imaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Yin J, Wang Z, Zhao F, Yang H, Li M, Yang Y. A novel dual functional pyrene-based turn-on fluorescent probe for hypochlorite and copper (II) ion detection and bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118470. [PMID: 32474369 DOI: 10.1016/j.saa.2020.118470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
A novel dual-function fluorescent probe PPH was conveniently synthesized by linking pyrazinehydrazide unit and pyrenyl fluorophore. The present probe PPH could be used for simultaneous detection of ClO- and Cu2+ through a fluorescence turn-on response. The probe PPH displayed excellent selectivity and sensitivity towards ClO- and Cu2+ over other anions and metal ions. The detection limits of PPH for ClO- and Cu2+ were calculated to be as low as 4.02 nM and 157 nM, respectively. The probe PPH had good pH stability and was highly responsive to ClO- and Cu2+ in a wide pH range. Furthermore, this probe could be readily applied to visualize ClO- and Cu2+ on the test paper. Additionally, this probe was successfully utilized to the fluorescence imaging of ClO- and Cu2+ in HeLa cells.
Collapse
Affiliation(s)
- Jie Yin
- Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglong Wang
- Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Fei Zhao
- Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiyan Yang
- Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Chu CJ, Wu GS, Ma HI, Venkatesan P, Thirumalaivasan N, Wu SP. A fluorescent turn-on probe for detection of hypochlorus acid and its bioimaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118234. [PMID: 32163873 DOI: 10.1016/j.saa.2020.118234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Hypochlorous acid has played several functions in the biological system. However, excess HOCl can cause damage to biomolecules and result in some diseases. Accordingly, a new fluorescent probe, BSP, has been developed for fast recognition of HOCl through the HOCl-induced oxidation of methyl phenyl sulfide to sulfoxide. The reaction of BSP with HOCl caused a 22-fold fluorescence enhancement (quantum yield increase from 0.006 to 0.133). The detection limit of HOCl is found to be 30 nM (S/N = 3). The fluorescence enhancement is due to the suppression of the photo-induced electron transfer from the methyl phenyl sulfide moiety to BODIPY. Eventually, the cellular fluorescence imaging experiment showed that BSP could be effectively used for monitoring HOCl in living cells.
Collapse
Affiliation(s)
- Chien-Ju Chu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Syuan Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Ho-I Ma
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Parthiban Venkatesan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | | | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
12
|
So H, Cho H, Lee H, Tran MC, Kim KT, Kim C. Detection of zinc (II) and hypochlorite by a thiourea-based chemosensor via two emission channels and its application in vivo. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Gao LL, Wang WW, Wu WN, Wang Y, Zhao XL, Fan YC, Li HJ, Xu ZH. Sensitive and selective fluorescent probe for hypochlorite in 100% aqueous solution and its application for lysosome-targetable cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118110. [PMID: 32007906 DOI: 10.1016/j.saa.2020.118110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 05/26/2023]
Abstract
A morpholine-functionalized pyrrole-cyanine probe was synthesized via a simple condensation reaction in high yield. This probe exhibits high selectivity toward ClO- on fluorescence and UV-vis spectra in neat aqueous solution. The strong green emission of the probe solution was quenched and the yellow color faded immediately upon the addition of ClO-. The detection limit of the probe for ClO- was 0.165 μM. The mechanism of hypochlorite-induced CC breakage was supposed on the basis of EIS-MS, NMR, and density functional theory (DFT) calculation. Finally, the probe was utilized to image ClO- in lysosomes of living cells.
Collapse
Affiliation(s)
- Liang-Liang Gao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wan-Wan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hui-Jun Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
14
|
Fang Q, Yue X, Han S, Wang B, Song X. A rapid and sensitive fluorescent probe for detecting hydrogen polysulfides in living cells and zebra fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117410. [PMID: 31352139 DOI: 10.1016/j.saa.2019.117410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen polysulfides (H2Sn, n>1) plays crucial roles in many biological processes, while it remains a challenge for rapid and selective detection of H2Sn. We designed and synthesized a turn-on fluorescent probe (JCCF) for detecting H2Sn based on a new julolidine-coumarinocoumarin scaffold. H2Sn could trigger a dramatic fluorescence enhancement (52-fold) with a fast response time and a low detection limit of 98.3 nM (S/N = 3). Moreover, JCCF was successfully applied to image H2Sn in living cells and zebra fish with low cytotoxicity.
Collapse
Affiliation(s)
- Qian Fang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China
| | - Xiuxiu Yue
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China
| | - Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, Hunan Province, China.
| |
Collapse
|
15
|
Ruan S, Gao Y, Wang Y, Li M, Yang H, Song J, Wang Z, Wang S. A novel berberine-based colorimetric and fluorimetric probe for hydrazine detection. NEW J CHEM 2020. [DOI: 10.1039/d0nj03599h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrazine in water and soil has caused serious diseases for human health. In this work, a simple fluorescent probe (BP) for hydrazine detection was synthesized from berberine. The probe has excellent fluorescence properties and naked-eye detection.
Collapse
Affiliation(s)
- Shutang Ruan
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Yu Gao
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Yunyun Wang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Mingxin Li
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Haiyan Yang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint
- Flint
- USA
| | - Zhonglong Wang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| | - Shifa Wang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|
16
|
Taheri M, Mansour N. Functionalized silicon nanoparticles as fluorescent probe for detection of hypochlorite in water. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|