1
|
Samanta T, Mandal S, Karmakar A, Pramanik A, Kundu R, Begum NA. An insight into the role of ESIPT/TICT-based antioxidant flavone analogues in fluoro-probing diabetes-induced viscosity changes: a unified experimental and theoretical endeavour. Photochem Photobiol Sci 2024:10.1007/s43630-024-00630-6. [PMID: 39249169 DOI: 10.1007/s43630-024-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Potent antioxidants, like 3-hydroxy flavones, attracted considerable attention due to their excited state intramolecular proton transfer (ESIPT)-based fluorescence behaviour. This article is an interesting demonstration of a series of synthetic 3-hydroxy flavone analogues having high antioxidant activity as molecular rotor-like viscosity probes. Among these flavone analogues, 4'-N,N-dimethylamino-3-hydroxy flavone (3) is the most potent one, showing the twisted intramolecular charge transfer (TICT)-dependent fluoroprobing activity toward the blood viscosity changes associated with diabetes and free fatty acids (FFA)-induced nuclear viscosity changes of MIN6 cells. The TICT dynamics of (3), which instigates its viscosity probing activity, was comprehended with the help of DFT-based computational studies. Abnormal cellular viscosity changes are the pathological traits for various diseases, and non-toxic flavone-based viscosity probes can be useful for diagnosing such pathological conditions.
Collapse
Affiliation(s)
- Trisha Samanta
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India
| | - Samanwita Mandal
- Department of Zoology, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India
| | - Abhijit Karmakar
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Rakesh Kundu
- Department of Zoology, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India.
| | - Naznin Ara Begum
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
2
|
Yan L, Guo M, Wan Y, Wan Y, Li Q, Zhu L, Yin H, Shi Y. Fluorescence emission mechanism for the π-conjugated zwitterion 2,4-Bisimidazolylphenol base on ESIPT: A TDDFT theoretical reconsideration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124043. [PMID: 38368821 DOI: 10.1016/j.saa.2024.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Molecules with zwitterionic characteristics exhibit significant potential for utilization in nonlinear optics, optoelectronics, and organic lasers owing to their large dipole moments. Recently, the synthesized compound 2,4-bis (4,5-diphenyl-1H-imidazol-2-yl) phenol (2,4-bImP) by Sakai et al. has been noticed for its unique photochromic properties in solvents [J. Phys. Chem. A, 125 (2021), 4784-4792]. The observed fluorescence in chloroform was attributed to the keto tautomer. Based on the excited state intramolecular proton transfer, the photochromism of 2,4-bImP in chloroform was interpreted as zwitterion production. However, the zwitterion with a specific electronic structure can be in resonance with the conventional neutral structure. The impact of the resonance contribution from the zwitterion and the conventional neutral structure on fluorescence attribution was not taken into account in the previous studies. In this investigation, the ESIPT mechanism of the 2,4-bImP in chloroform has been explored using both the density functional theory and the time-dependent density functional theory. The optimized geometric configuration parameters illustrate the molecular resonant properties. The calculated fluorescence spectra on the basis of the optimization results further corroborate that the fluorescence peaks after proton transfer originates from the resonance of the zwitterionic and the neutral configuration. The zwitterionic nature of the molecule was demonstrated by electrostatic potential and atomic dipole modified Hesfeld atomic charge (ADCH) analysis. Furthermore, the characterization of potential energy curves and IR spectrum further verified the resonance of both the zwitterionic and neutral structures. The results reveal that the 2,4-bImP molecule generates the neutral o-quinoid structure and the zwitterionic structure resonance phenomenon following ESIPT. The aforementioned resonance structure offers novel insights into the ascription of fluorescence. These discoveries establish the theoretical foundation for the exploration and development of zwitterions.
Collapse
Affiliation(s)
- Lu Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Meilin Guo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lixia Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Chen L, He H, Huang X, Xu H, Yu Y. Control of the fluorescence molecule 2-(2'-hydroxyphenyl) benzothiazole derivatives by introducing electron-donating and withdrawing substituents groups. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122666. [PMID: 37043917 DOI: 10.1016/j.saa.2023.122666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Using density functional theory (DFT) and time-dependent density functional theory (TDDFT), we investigate the fluorescence mechanism of (E)-4-(3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylstyryl)-1-methylpyridin-1-ium (HBTMY) and the excited-state intramolecular proton transfer process (ESIPT) of hydroxyphenyl. Herein, we introduce two electron-donating (amino and methoxy) and two electron-withdrawing (hydrogen and cyano) groups into HBTMY to study their effects on the fluorescence and the ESIPT process. Structural parameters, infrared vibration frequency, vertical excitation and emission energies as well as frontier molecular orbitals show that the substituents have different impacts on intramolecular hydrogen bonding behavior. The result shows that the fluorescence wavelength of molecules with the amino group could reach the near-infrared area, which favors using this fluorescence in the living cell. As the ability of electron-absorbing groups increases, the forward energy barrier in the potential energy curves decreases sharply making the ESIPT process more familiar to take place. Thus, this work offers a guide for cell imaging and provides strategies to adjust and control fluorescence by introducing substituents.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Haixiang He
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| | - Xindi Huang
- Guangxi Institute of Metrology and Test, Nanning 530004, PR China
| | - Honghong Xu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yan Yu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
4
|
Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat Commun 2023; 14:1419. [PMID: 36918539 PMCID: PMC10014876 DOI: 10.1038/s41467-023-36869-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central nervous system of organisms; however, specifically tracking the transient NE dynamics with high spatiotemporal resolution in living systems remains a great challenge. Herein, we develop a small molecular fluorescent probe that can precisely anchor on neuronal cytomembranes and specifically respond to NE on a 100-ms timescale. A unique dual acceleration mechanism of molecular-folding and water-bridging is disclosed, which boosts the reaction kinetics by ˃105 and ˃103 times, respectively. Benefiting from its excellent spatiotemporal resolution, the probe is applied to monitor NE dynamics at the single-neuron level, thereby, successfully snapshotting the fast fluctuation of NE levels at neuronal cytomembranes within 2 s. Moreover, two-photon fluorescence imaging of acute brain tissue slices reveals a close correlation between downregulated NE levels and Alzheimer's disease pathology as well as antioxidant therapy.
Collapse
|
5
|
Switching the ESIPT and TICT process of DP-HPPI via intermolecular hydrogen bonding. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Theoretical Study the Mechanism of ESIPT Process for pyridine-hydrazone-substituted naphthalimide receptor 4a-E. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhu L, Zhou Q, Cao B, Li B, Wang Z, Zhang X, Yin H, Shi Y. Theoretical reconsideration of the mechanism of the excited state proton transfer of indigo carmine in water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Li Y, Cao B, Zhou Q, Zhang X, Li B, Su X, Shi Y. Enhancing fluorescence of benzimidazole derivative via solvent-regulated ESIPT and TICT process: A TDDFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119862. [PMID: 33957448 DOI: 10.1016/j.saa.2021.119862] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
In this work, we use density functional theory and time dependent density functional theory to explore the ESIPT and TICT process of 6-(1H-Benzoimidazol-2-yl)-2,3-dimethoxy-phenol (BIDOP) in cyclohexane (CHX) and tetrahydrofuran (THF) solvent, respectively. It reveals that ESIPT process of BIDOP can occur in both CHX and THF solvent at the first excited state with similar reaction barrier. Remarkably, compared to barrierless from keto (K*) to TICT state of BIDOP in THF solvent, the reaction barrier between K* and TICT state is up to 20.28 kcal/mol for in CHX that TICT process is inhibited in CHX solvent. The absence of nonradiative decay TICT state of BIDOP in CHX solvent induces higher fluorescence in CHX compared to in THF solvent. These findings indicate that CHX solvent can effectively enhance fluorescence of BIDOP. Our study highlights a convenient approach for enhancing fluorescence and is significant for photophysics and photobiology field.
Collapse
Affiliation(s)
- You Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bifa Cao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qiao Zhou
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bo Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xing Su
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Cao B, Li Y, Zhou Q, Li B, Su X, Yin H, Shi Y. Synergistically improving myricetin ESIPT and antioxidant activity via dexterously trimming atomic electronegativity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Skillfully tuning 1-hydroxy-9H-fluoren-9-one forward-backward ESIPT processes by introducing electron-withdrawing groups: A theoretical exploration. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112627] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|