1
|
Wang M, Yang X, Yuan M, Zhou W, Yang L. Near-Infrared Fluorescent Probe for the Detection of Cysteine. APPLIED SPECTROSCOPY 2024; 78:744-752. [PMID: 39096170 DOI: 10.1177/00037028241241342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Hemicyanine dyes are an ideal structure for building near-infrared fluorescent probes due to their excellent emission wavelength properties and biocompatibility in biological imaging field. Developing a near-infrared fluorescent probe capable of detecting cysteine (Cys) was the aim of this study. A novel developed fluorescent probe P showed high selectivity and sensitivity to Cys in the presence of various analytes. The detection limit of P was found to be 0.329 μM. The MTT assay showed that the probe was essentially non-cytotoxic. Furthermore, the probe was successfully used as cysteine imaging in living cells and mice.
Collapse
Affiliation(s)
- Minghui Wang
- College of Nursing and Health, Henan University, Kaifeng, Henan, China
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, China
| | - Xindi Yang
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, China
| | - Mengyao Yuan
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, China
| | - Wei Zhou
- College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Li Yang
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Li Z, Zhang M, An C, Yang H, Feng L, Cui Z, Shi M, Zheng D, Long S, Song D. A colorimetric and fluorescent probe of lignocellulose nanofiber composite modified with Rhodamine 6G derivative for reversible, selective and sensitive detection of metal ions in wastewater. Int J Biol Macromol 2024; 267:131416. [PMID: 38582486 DOI: 10.1016/j.ijbiomac.2024.131416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Heavy metal ions have extremely high toxicity. As the top of food chain, human beings certainly will accumulate them by ingesting food and participating other activities, which eventually result in the damage to our health. Therefore, it is very meaningful and necessary to design a simple, portable, stable and efficient material for heavy metal ions detection. Based on the spirolactam Rhodamine 6G (SRh6G) fluorescent probe, we prepared two types of nanocomposite materials (membrane and aerogel) by vacuum filtration and freeze-drying methods with lignocellulose nanofiber (CNF) as a carrier, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the cross-linkers. Then the microstructure, chemical composition, wetting property, fluorescence intensity and selectivity of as-prepared SRh6G/PVA/CNF would be characterized and analyzed. Results showed that SRh6G/PVA/CNF nanocomposites would turn red in color under strong acidic environment and produced orange fluorescence under ultraviolet light. Besides, they were also to detect Al3+, Cu2+, Hg2+, Fe3+ and Ag+ through color and fluorescence variations. We had further tested its sensitivity, selectivity, adsorption, fluorescence limits of detection (LOD) to Fe3+ and Cu2+. The test towards real water samples (hospital wastewater, Songhua River and tap water) proved that SRh6G/PVA/CNF nanocomposites could detect the polluted water with low concentrations of Fe3+ and Cu2+. In addition, SRh6G/PVA/CNF nanocomposites have excellent mechanical property, repeatability, superhydrophilicity and underwater superoleophobicity, which may offer a theoretical reference for the assembly strategy and detection application of cellulose-based fluorescent probe.
Collapse
Affiliation(s)
- Zhenghui Li
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| | - Ming Zhang
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China.
| | - Congcong An
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| | - Haiyue Yang
- School of Material Science and Engineering, Key laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lijuan Feng
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| | - Zexin Cui
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| | - Meihui Shi
- Engineering Research Center of High Performance Hollow Nanofiltration Membrane of Jilin Province, Jilin Jinsai Technology Development Co., Ltd, Jilin 132013, China
| | - Dingqiang Zheng
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| | - Shoufu Long
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| | - Dongsheng Song
- School of Material Science and Engineering, Wood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, China
| |
Collapse
|
3
|
Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydr Polym 2023; 304:120509. [PMID: 36641173 DOI: 10.1016/j.carbpol.2022.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
In recent years, the considerable importance of healthcare and the indispensable appeal of curative issues, particularly the diagnosis of diseases, have propelled the invention of sensing platforms. With the development of nanotechnology, the integration of nanomaterials in such platforms has been much focused on, boosting their functionality in many fields. In this direction, there has been rapid growth in the utilisation of nanocellulose in sensors with medical applications. Indeed, this natural nanomaterial benefits from striking features, such as biocompatibility, cytocompatibility and low toxicity, as well as unprecedented physical and chemical properties. In this review, different classifications of nanocellulose-based sensors (biosensors, chemical and physical sensors), alongside some subcategories manufactured for health monitoring, stand out. Moreover, the types of nanocellulose and their roles in such sensors are discussed.
Collapse
|
4
|
Bis naphthalene derived dual functional chemosensor: Specific signalling for Al3+ and Fe3+ ions with on-the-spot detection, bio-imaging, and logic gate applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Qi X, Kan W, Zhao B, Du J, Ding L, Wang L, Song B. Two phenanthro[9,10-d]imidazole-based fluorescence probes for distinguishable detection of Cys and Fe3+ and their applications in food and water as well as living cells monitoring. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Yan Q, Wang Y, Wang Z, Zhang G, Shi D, Xu H. A novel water-soluble flavonol-based fluorescent probe for highly specific and sensitive detection of Al 3+ and its application in onion and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121384. [PMID: 35636134 DOI: 10.1016/j.saa.2022.121384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A novel and simple turn-on fluorescence probe (HD) for Al3+ detection was successfully developed based on flavonol derivatives. This probe exhibited a significantly enhanced fluorescence response toward Al3+ in aqueous solution which could be observed by naked-eye from poor fluorescence to strong light green emission. The probe HD displays highly specific detection for Al3+ over other competitive metal ions, and the detection limit of probe HD for Al3+ was determined to be 2.57 × 10-8 M, which are much lower than the World Health Organization (WHO) guideline value for drinking food/water. The binding stoichiometry of probe HD with Al3+ was determined to be 1:1 according to Job's plot and ESI-HRMS analysis, and the binding constant was calculated to be 2.01 × 104 M-1. The probe HD exhibited high selectivity, high sensitivity, good anti-interface ability, and wide pH application range as well as the quantitative determination in the detection of Al3+. The coordination mechanism of probe HD with Al3+ was supported by density functional theory (DFT) calculations and HRMS analysis. In addition, the probe HD was found to have good cell permeability and could be applied for live-cell imaging to detect Al3+ in onions and zebrafish.
Collapse
Affiliation(s)
- Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gang Zhang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Donghai Shi
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China.
| |
Collapse
|
7
|
Langari MM, Antxustegi MM, Labidi J. Nanocellulose-based sensing platforms for heavy metal ions detection: A comprehensive review. CHEMOSPHERE 2022; 302:134823. [PMID: 35525457 DOI: 10.1016/j.chemosphere.2022.134823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Increase in industrial activities has been arising a severe concern about water pollution caused by heavy metal ions (HMIs), such us lead (Pb2+), cadmium (Cd2+) or mercury (Hg2+). The presence of substantial amounts of these ions in the human body is harmful and can cause serious diseases. Hence, the detection of HMIs in water is of great importance. As technological advances have developed, some conventional methods have become obsolete due to some methodological disadvantages, giving way to a second generation that uses novel sensors. Recently, nanocellulose, as a biocompatible material, has drawn a remarkable attraction for developing sensors owing to its extraordinary physical and chemical properties. This review pays a special attention to the different dimensional nanocellulose-based sensors devised for HMIs recognition. What is more, different sensing techniques (optical and electrochemical), sensing mechanisms and the roles of nanocellulose in such sensors are discussed.
Collapse
Affiliation(s)
- Mahsa Mousavi Langari
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018, Donostia, Spain
| | - M Mirari Antxustegi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Avenida Otaola 29, 20600, Eibar, Spain
| | - Jalel Labidi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018, Donostia, Spain.
| |
Collapse
|
8
|
Moon S, Lee M, Kim C. A Naphthol and Nitroaniline‐Based Dual‐target Chemosensorfor Fluorometric Sensing of Al
3+
and Colorimetric Sensing of Fe
3+. ChemistrySelect 2022. [DOI: 10.1002/slct.202201353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sungjin Moon
- Department of Fine Chem. and New and Renewable Energy Convergence Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 01811 Korea
| | - Minji Lee
- Department of Fine Chem. and New and Renewable Energy Convergence Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 01811 Korea
| | - Cheal Kim
- Department of Fine Chem. and New and Renewable Energy Convergence Seoul National Univ. of Sci. and Tech. (SNUT) Seoul 01811 Korea
| |
Collapse
|
9
|
Switch-type near-infrared fluorescent probes for Hg2+ based on rhodamines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zhao Y, Cheng J, Li J, Wang L, Li W, Chang Z, Sun C. The synthesis of a new aromatic polycarboxylic acid and its property as fluorescence-colorimetric chemosensor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Kou X, Li X, Hu C, Liu J, Chen Y, Zhang Y, Yang A, Shen R. Multifunctional fluorescence sensor as a potential theranostic agent against Alzheimer's disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120587. [PMID: 34782268 DOI: 10.1016/j.saa.2021.120587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Metal ions play an important role in the pathogenesis of Alzheimer's disease (AD). Metal dyshomeostasis, β-amyloid (Aβ) accumulation and oxidative stress, etc. are related to metal ions. So, metal therapeutics has aroused increasingly more attention, especially the research of metal-involved theranostic agents. In this work, a highly selective and sensitive multifunctional fluorescence sensor 1 with a naphthol unit based on photoinduced electron transfer (PET) and excited state proton transfer (ESPT) mechanism was synthesized, and its synergistic biological effects on regulating metal dyshomeostasis, modulating Aβ accumulation and scavenging reactive oxygen species (ROS) was evaluated. The results demonstrated that 1 exhibited significant fluorescence enhancement towards Al3+ (the limit was as low as 0.01 ppm), superior chelating abilities with metal ions, even better modulation effect of Cu2+-induced Aβ1-42 accumulation than curcumin, good elimination effect of ROS, clear fluorescence image in living cells, low cytotoxic and appropriate blood brain barrier (BBB) permeability. Overall, these findings revealed that 1 could be used as a potential theranostic agent against AD for further research.
Collapse
Affiliation(s)
- Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xingying Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengting Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Juanjuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuhong Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
12
|
Erdemir S, Oguz M, Malkondu S. A NIR fluorescent sensor based on thiazoline-isophorone with low cytotoxicity in living cells for Hg 2+ detection through ICT associated hydrogen bonding effect. Anal Chim Acta 2022; 1192:339353. [PMID: 35057933 DOI: 10.1016/j.aca.2021.339353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Mercury (Hg) is a toxic pollutant and may cause serious health and environmental threats even at low concentrations. Thus, sensitive, efficient, and accurate techniques for the detection of Hg2+ ions in biological systems are in particular demand. In the current paper, a new, red emitting fluorescence probe (THI) based on electron deficient dicyanovinyl, electron-rich diethylamino, and receptor thiazoline toward Hg2+ has been developed. It has been determined that the recognition behavior of the probe toward Hg2+ is reversible with S2-. The probe not only shows perfect selectivity toward Hg2+ with a low detection limit over a series of metal ions, but it also displays positive solvato-chromism among the tested solvents via modulation of intramolecular energy transfer from the diethylamino to a dicyanovinyl moiety. Furthermore, it has been shown that the probe can be applied as a fluorescent probe for visualizing Hg2+ in living HeLa cells through a confocal laser scanning microscope. Also, the probe THI has not shown any toxic effect in cervical cancer and epithelial cells. Thus, the probe demonstrates high promise for Hg2+ detection in biomarker screening, disease diagnosis, and clinical medicine with low cytotoxicity.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
13
|
Ju L, Shao Q, Lu L, Lu H. A New Turn-On Fluorescent Chemosensor for Selective Detection of Al 3+ Based on a Purine Schiff Base and Its Cell Imaging. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Wang Q, Zheng D, Cao Q, Huang K, Qin D. A dual-response fluoran-phenothiazine hybrid fluorescent probe for selective sensing of Fe 3+ and ClO - and cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120061. [PMID: 34146825 DOI: 10.1016/j.saa.2021.120061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Bifunctional fluorescent probes with dual-emission response attract extensive attention. A novel fluorescent probe FP, a hybrid of fluoran and phenothiazine, has been designed and synthesized for selective sensing of Fe3+ and ClO- with dual-emission changes, which involes mechanisms of Fe3+-promoted spirolactone ring opening and ClO--induced oxidation of phenothiazine moiety, respectively. In addition, the detection limits for Fe3+ and ClO- were estimated to be 49.1 and 35.9 nM, respectively. Significantly, FP can be employed as an tracer for the detection of Fe3+ ions within living HeLa cells by fluorescence imaging.
Collapse
Affiliation(s)
- Qinghui Wang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dasheng Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiuhui Cao
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
15
|
Cai CH, Wang HL, Man RJ. Monitoring of Fe (II) ions in living cells using a novel quinoline-derived fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119729. [PMID: 33784593 DOI: 10.1016/j.saa.2021.119729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Physiologically, Fe(III) and Fe(II) is the most important redox pairs in a variety of biological and environmental procedures with its capability of transition. The detection of physiological iron, especially Fe(II), has become the recent research focus of investigations on revealing the mechanism of iron-related metabolism. In this work, we exploited a novel quinoline-derived fluorescent probe, YTP, for the detection of Fe(II). It could monitor the level of Fe(II) with a linear range of 0-2.0 equivalent and the detection limit of 0.16 µM. High selectivity from other analytes including Fe(III) and steadiness for over 24 h confirmed the practicability of YTP. YTP was further applied in real buffer systems and in cellular imaging. The probe could achieve the semi-quantitative monitoring of Fe(II) in living cells. This work provided a potential implement for the detection of Fe(II), and raised important information for further researches on the redox pairs of iron, in mechanism and in practice.
Collapse
Affiliation(s)
- Chun-He Cai
- School of Water Resources and Environment, China University of Geosciences (Beijing), 20 Chengfu Rd., Beijing 100083, PR China; Beijing Kaiheyingran Consulting Co., Ltd., F-101, Fuliaidingbao, Baijiazhuang No.1, Chaoyang Dist, Beijing 100020, China; Nanjing University, School of Life Science, Xianlin Campus, No.163, Xianlin Rd, 210093 Nanjing, China
| | - He-Li Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), 20 Chengfu Rd., Beijing 100083, PR China.
| | - Ruo-Jun Man
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Nanning 530006, China.
| |
Collapse
|
16
|
Wu D, Qu C, Wang J, Yang R, Qu L. Highly sensitive and selective fluorescence sensing and imaging of Fe 3+ based on a novel nitrogen-doped graphene quantum dots. LUMINESCENCE 2021; 36:1592-1599. [PMID: 33900668 DOI: 10.1002/bio.4062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
A novel nitrogen-doped graphene quantum dots (N-GQDs) with a green fluorescence emission was synthesized through microwave method using citric acid and semicarbazide hydrochloride as reactants. The as-synthesized N-GQDs exhibited good stability, excellent water solubility, and negligible cytotoxicity. Due to intermolecular charge transfer, ferric ion (Fe3+ ) has a strong quenching effect on the N-GQDs. Fluorescence quenching has a linear relationship with the Fe3+ concentration in the range 0.02-12 μM. The detection limit was 1.43 nM. What is more, it is worth mentioning that the obtained N-GQDs showed high selectivity and sensitivity towards Fe3+ . Under the optimum conditions, the addition of 10-fold copper ions and 100-fold other metal ions had no influence on the detection of Fe3+ (0.8 μM), which indicated a higher sensitivity compared with that of the reported methods. Due to their excellent properties, the obtained N-GQDs was successfully applied for sensing and imaging Fe3+ in water samples and HeLa cells.
Collapse
Affiliation(s)
- Dongming Wu
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Chaojie Qu
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Jizhong Wang
- Ministry of Agriculture and Rural Affairs, Hunan Division GRG Metrol & Test, Key Laboratory Southern Farmland Pollution Prevention & Control, Changsha, Hunan, China
| | - Ran Yang
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Lingbo Qu
- Green Catalysis Center of Zhengzhou University, College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Xu H, Chen W, Ju L, Lu H. A purine based fluorescent chemosensor for the selective and sole detection of Al 3+ and its practical applications in test strips and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119074. [PMID: 33120119 DOI: 10.1016/j.saa.2020.119074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A novel purine Schiff base fluorescent probe (WYW), (E)-4-methyl-2-((2-(9-(naphthalen-1-yl)-8-(thiophen-2-yl)-9H-purin-6-yl)hydrazono)methyl)phenol, was designed and prepared as an excellent reversible fluorescent chemosensor for monitoring Al3+. The fluorogenic "turn-on" sensor WYW exhibited high selectivity towards Al3+ over other coexistent metal ions, accompanying with an obvious visual color change in DMSO/H2O (9/1, v/v, pH = 7.4) media. The enhancement fluorescence of WYW could be attributed to the inhibition of PET and ESIPT process induced by Al3+. Notably, the WYW-Al3+ complex exhibited a fluorescence "turn-off" response towards F- with exceptional selectivity via the displacement approach. The detection limit of WYW for Al3+ was calculated to be as low as 82 nM. The formation of complex WYW-Al3+ (1:1 stoichiometry) was confirmed by Job's methods and further verified by density functional theory (DFT) calculations. Furthermore, the probe WYW with low cytotoxicity and excellent membrane-permeable property has also been successfully applied for detecting low concertation Al3+ in living HeLa cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Wei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Lixin Ju
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
18
|
Qi H, Bai B, Wang H, Wei J, Li M, Xin H. Multiple stimulus-responsive behavior of a triphenylamine-substituted acylhydrazone derivative. NEW J CHEM 2021. [DOI: 10.1039/d0nj05015f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A triphenylamine-based acylhydrazone derivative (TBHM) was synthesized, and its emission properties either in solution or in the solid state were studied.
Collapse
Affiliation(s)
- Hongyang Qi
- College of Physics
- Jilin University
- Changchun 130012
- P. R. China
| | - Binglian Bai
- College of Physics
- Jilin University
- Changchun 130012
- P. R. China
| | - Haitao Wang
- Key Laboratory for Automobile Materials
- Ministry of Education
- Institute of Materials Science and Engineering
- Jilin University
- Changchun 130012
| | - Jue Wei
- College of Physics
- Jilin University
- Changchun 130012
- P. R. China
| | - Min Li
- Key Laboratory for Automobile Materials
- Ministry of Education
- Institute of Materials Science and Engineering
- Jilin University
- Changchun 130012
| | - Hong Xin
- College of Chemistry and Chemical Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|