1
|
Abbaschian S, Soltani M. Functional, structural, and rheological properties of the complexes containing sunflower petal extract with dairy and plant-based proteins. Food Chem 2025; 465:141948. [PMID: 39591707 DOI: 10.1016/j.foodchem.2024.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This study aims to investigate the impact of sunflower petal extract (SFE) on the functional and structural properties of sodium caseinate and chickpea proteins. For this purpose, 3.5 % of sodium caseinate solution and 3.5 % of protein extracted from chickpea powder were prepared in phosphate buffer (pH = 7). SFE was used at different concentrations, from 1 to 3 % in different protein solutions and functional, structural and rheological properties were measured. The results revealed that complexation of SFE with different proteins can enhance the antioxidant, foaming properties, solubility, emulsion activity, emulsion stability, viscoelastic behavior, and can decrease surface hydrophobicity. FTIR and docking results showed that the most bonding type was non-covalent bonds. Major phenolic compounds containing heliannone A, B, and kaempferol had strong affinity with sodium caseinate, and then chickpea protein. Therefore, the results demonstrated that SFE and its complexes had appropriate emulsifying properties that reduces interfacial tension in the water/oil interface.
Collapse
Affiliation(s)
- Somayeh Abbaschian
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Niu D, Feng X, Zhang A, Li K, Wang LH, Zeng XA, Wang S. Revealing the synergistic antibacterial mechanisms of resveratrol (RES) and pulsed electric field (PEF) against Acetobacter sp. Food Res Int 2024; 197:115237. [PMID: 39577929 DOI: 10.1016/j.foodres.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In the wine industry, Acetobacter sp. is a typical spoilage microorganism responsible for increased volatile acids and wine spoilage. This study investigated the impact of combined treatment using varying concentrations of resveratrol (RES) and pulsed electric field (PEF) on the bactericidal efficacy, intracellular enzyme activities, and cellular metabolism of Acetobacter sp. The results from the Weibull mathematical model revealed a notable enhancement in the bactericidal effectiveness of the RES and PEF treatments with increasing RES concentration. In addition, the synergies between RES and PEF might not only resulted in the deactivation of Alcohol dehydrogenase (ADH) and Aldehyde dehydrogenase (ALDH) of Acetobacter sp., but also induced modifications in the secondary and tertiary structures of intracellular enzymes as evidenced by fluorescence, ultraviolet, fourier transform infrared, and circular dichroism spectra. Furthermore, metabolomics results showed that 1,910 metabolites exhibited differential expression, with 1,118 metabolites being down-regulated and 792 metabolites being up-regulated. After the synergies between RES and PEF, 17 biochemical pathways were significantly changed, mainly involving amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, nucleotide metabolism, etc. These findings demonstrated that the combined treatment of RES and PEF can effectively suppress the growth of Acetobacter sp. and the inactivation mechanism of Acetobacter sp. by PEF in conjunction with RES was revealed.
Collapse
Affiliation(s)
- Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Xiaoqin Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ailin Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lang-Hong Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
de Almeida CC, Baião DDS, da Silva DVT, da Trindade LR, Pereira PR, Conte-Junior CA, Paschoalin VMF. Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits. Compr Rev Food Sci Food Saf 2024; 23:e70053. [PMID: 39530635 DOI: 10.1111/1541-4337.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Phenolic compounds are recognized for their benefits against degenerative diseases. Clinical and nutritional applications are limited by their low solubility, stability, and bioavailability, compromising their efficacy. Natural macromolecules, such as lipids, polysaccharides, and proteins, employed as delivery systems can efficiently overcome these limitations. In this sense, proteins are attractive due to their biocompatibility and dynamic structure properties, functional adaptability and self-assembly capabilities, offering stability, efficient encapsulation, and controlled release. This review explores the potential use of dairy proteins, caseins, and whey proteins, and, alternatively, nondairy proteins, gelatin, human serum albumin, maize zein, and soybean proteins, in building wall materials for the delivery of phenolic compounds. To optimize performance, aspects, such as protein-phenolic affinity and complex stability/activity, should be considered when designing particle nano-architecture. Molecular interactions between protein-phenolic compound complexes are, thus, further discussed, as well as the effects of temperature and pH and strategies to stabilize and preserve nano-architecture and retain phenolic compound activity. All proteins harbor one or more putative binding sites, shared or not, depending on the phenolic compound. Preservation techniques are still a case-to-case study, as no behavior patterns among different complexes are noted. Safety aspects necessary for the marketing of nanoproducts, such as characterization, toxicity assessments, and post-market monitoring as defined by the European Food Safety Authority and the Food and Drug Administration, are discussed, evidencing the need for a unified regulation. This review broadens our understanding and opens new opportunities for the development of novel protein-based nanocarriers to obtain more effective and stable products, enhancing phenolic compound delivery and health benefits.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Diego Dos Santos Baião
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucileno Rodrigues da Trindade
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Na Z, Liu S, Bi H, He X, Liu T. Inhibitory effects of polyphenols on the Maillard reaction in low lactose milk and the underlying mechanism. J Dairy Sci 2024:S0022-0302(24)01194-9. [PMID: 39369897 DOI: 10.3168/jds.2024-25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
In this study, low lactose milk (LLM) was heat-treated under different conditions and stored at 4, 25 and 37°C for 15 d, after which the changes in the Maillard reaction (MR) of LLM were investigated. The contents of α-dicarbonyl compounds and 5-hydroxymethylfurfural(5-HMF) in LLM after the addition of polyphenols were determined via HPLC, and the inhibitory effects of 3 different concentrations of epigallocatechin gallate (EGCG), dihydromyricetin (DMY), and procyanidin (PC) on the MR of LLM were studied. The fluorescence intensity of LLM was measured at 290, 300 and 310 K, the fluorescence quenching types and binding constants of PC on casein were investigated, and thermodynamic analysis was carried out. These results suggest that the optimal heat treatment conditions were 80°C for 15 s and that the optimal storage conditions were 4°C. In the α-dicarbonyl compound capture and 5-HMF inhibition tests, PC had the greatest inhibitory effect at a concentration of 0.2 mg/mL, with an inhibition rate of 48.19%. Therefore, PC is more stable than the other 2 polyphenols. The mechanism of inhibition involves the formation of matrix complexes between PC and casein in LLM, resulting in static quenching of the LLM and thus a reduction of the inhibitory effect. The thermodynamic analysis revealed that the binding of PC to casein was an exothermic reaction, and the combination of the 2 was driven mainly by hydrogen bonding and van der Waals forces. This study lays a theoretical foundation for the development of LLM.
Collapse
Affiliation(s)
- Zhiguo Na
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Siqi Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Haixin Bi
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150060, China.
| | - Xin He
- College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150060, China
| | - Tong Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| |
Collapse
|
5
|
Wang C, Lu Y, Xia B, Li X, Huang X, Dong C. Complexation of bovine lactoferrin with selected phenolic acids via noncovalent interactions: Binding mechanism and altered functionality. J Dairy Sci 2024; 107:4189-4204. [PMID: 38369115 DOI: 10.3168/jds.2023-24088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Noncovalent interactions of 4 selected phenolic acids, including gallic acid (GA), caffeic acid (CA), chlorogenic acid (CGA), and rosmarinic acid (RA) with lactoferrin (LF) were investigated. Compound combined with LF in the binding constant of CA > GA > RA > CGA, driven by van der Waals and hydrogen bonding for GA, and hydrophobic forces for others. Conformation of LF was affected at secondary and ternary structure levels. Molecular docking indicated that GA and CA located in the same site near the iron of the C-lobe, whereas RA and CGA bound to the C2 and N-lobe, respectively. Significantly enhanced antioxidant activity of complexes was found compared with pure LF, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(2-ethylbenzothiazoline-6-sulfonate) (ABTS), and ferric reducing antioxidant power (FRAP) models. Caffeic acid, CGA, and RA significantly decreased the emulsifying stability index and improved foam ability of LF, and the effect of CA and RA was the most remarkable, respectively.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China.
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xiang Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
6
|
Wang W, Wu YR, Li J, Zhou Q, Yu ZY, Liu YN, Zheng MM, Zhou YB, Liu K. Comparison of Alternative Protein Hydrogels for Delivering Myricetin: Interaction Mechanism and Stability Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8784-8797. [PMID: 38566473 DOI: 10.1021/acs.jafc.3c09896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Food protein carriers from different sources might have distinct stabilizing and enhancing effects on the same small molecule. To elucidate the molecular mechanism, five different sourced proteins including soy protein isolates (SPIs), whey protein isolates (WPIs), edible dock protein (EDP), Tenebrio molitor protein (TMP), and yeast protein (YP) were used to prepare protein hydrogels for delivering myricetin (Myr). The results suggested that the loading capacity order of Myr in different protein hydrogels was EDP (11.5%) > WPI (9.3%) > TMP (8.9%) > YP (8.0%) > SPI (7.6%), which was consistent with the sequence of binding affinity between Myr and different proteins. Among five protein hydrogels, EDP had an optimum loading ability since it possessed the highest hydrophobic amino acid content (45.52%) and thus provided a broad hydrophobic cavity for loading Myr. In addition, these protein-Myr composite hydrogels displayed the core-shell structure, wherein hydrogen bonding and hydrophobic interaction were the primary binding forces between proteins and Myr. Moreover, the thermal stability, storage stability, and sustained-release properties of Myr were significantly enhanced via these protein delivery systems. These findings can provide scientific guidance for deeper utilization of food alternative protein sources.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Ru Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qian Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Yu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying-Nan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ming-Ming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi-Bin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Tang T, Lv Y, Su Y, Li J, Gu L, Yang Y, Chang C. The differential non-covalent binding of epicatechin and chlorogenic acid to ovotransferrin and the enhancing efficiency of immunomodulatory activity. Int J Biol Macromol 2024; 259:129298. [PMID: 38199555 DOI: 10.1016/j.ijbiomac.2024.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Seeking safe and environmentally friendly natural immunomodulators is a pressing requirement of humanity. This study investigated the differential binding characteristics of two polar polyphenols (PP), namely epicatechin (EC) and chlorogenic acid (CA), to ovotransferrin (OVT), and explored the relationship between structural transformations and immunomodulatory activity of OVT-PP complexes. Results showed that CA exhibited a stronger affinity for OVT than EC, mainly driven by hydrogen bonds and van der Waals forces. Complexation-induced conformational variations in OVT, including static fluorescence quenching, increased microenvironment polarity surrounding tryptophan and tyrosine residues, and the transition from disordered α-helix to stable β-sheet. Furthermore, the structural conformation transformation of OVT-PP complexes facilitated the enhancement of immunomodulatory activity, with the OVT-CA (10:2) complex demonstrating the best immunomodulatory activity. Principal component analysis (PCA) and Pearson correlation analysis revealed the immunomodulatory activities of the OVT-PP complexes were influenced by surface hydrophobicity (negatively correlated), β-sheet percentage and polyphenol binding constants. It could be inferred that PP complexation increased the surface polarity of OVT, consequently enhancing its immunomodulatory activity by promoting cell membrane affinity and antigen recognition. This study provides valuable guidance for effectively utilizing polyphenol-protein complexes in enhancing immunomodulatory activity.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanqi Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Chen J, Ma S, Chen X, Dai X, Zhang L, Yuan Y, Li L, Zhang H, Liu G, Ren G, Duan X, Xie Q, Cao W. Noncovalent Interaction of Lactoferrin with Epicatechin and Epigallocatechin: Focus on Fluorescence Quenching and Antioxidant Properties. ACS OMEGA 2023; 8:41844-41854. [PMID: 37970015 PMCID: PMC10633880 DOI: 10.1021/acsomega.3c06560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Lactoferrin (LF) from bovine milk possesses antioxidant activity, immune regulatory and other biological activities. However, the effects of epicatechin (EC) and epigallocatechin (EGC) interacting with LF on the antioxidant activity of LF have not been investigated. Therefore, this study aimed to explore their interaction mechanism and the antioxidant activity of LF. UV spectra revealed that EGC (100 μM) induced a higher blue shift of LF at the maximum absorption wavelength than that of EC (100 μM). Fluorescence spectra results suggested that LF fluorescence was quenched by EC and EGC in the static type, which changed the polarity of the microenvironment around LF. The quenching constants Ksv (5.91 × 103-9.20 × 103) of EC-LF complexes at different temperatures were all higher than that (1.35 × 103-1.75 × 103) of the EGC-LF complex. EC could bind to LF via hydrophobic interactions while hydrogen bonding and van der Waals forces drove the binding of EGC to LF. Both the EC-LF complex and EGC-LF complex could bind to LF with one site. EGC formed more hydrogen bonds with LF than that of EC. The antioxidant activity of LF was increased by the high addition level of EC and EGC. These findings would provide more references for developing LF-catechin complexes as functional antioxidants.
Collapse
Affiliation(s)
- Junliang Chen
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Shuhua Ma
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Xin Chen
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Xin Dai
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Li Zhang
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Yunxia Yuan
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Linlin Li
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Hui Zhang
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Gangtian Liu
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Xu Duan
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| | - Qinggang Xie
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Weiwei Cao
- College
of Food and Bioengineering, Henan University
of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
9
|
Wang W, Yang P, Xu Z, Zhao L, Wang Y, Liao X. Understanding the pH-dependent interaction of anthocyanin with two food-derived transferrins. Food Chem 2023; 410:135473. [PMID: 36641910 DOI: 10.1016/j.foodchem.2023.135473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The potential binding of cyanidin-3-O-glucoside (C3G) to bovine lactoferrin (BLF) and ovotransferrin (OTF) at pH 3, 5, and 7 was investigated for the first time. Multiple spectroscopic techniques demonstrated pH-dependent alterations in the conformational characteristics of BLF and OTF upon complexation with C3G. Fluorescence quenching assays showed that their highest binding affinity was at pH 7. Hydrophobic interactions and hydrogen bonds were found to be crucial in molecular dynamics simulations but with significantly lower probabilities of formation at pH 3 (p < 0.05). At pH 7, electrostatic attraction can occur for the negatively charged forms of C3G, and the well-maintained native structures of BLF and OTF may be favorable for stabilizing the C3G binding sites. This study sheds light on the stronger interaction of C3G with BLF/OTF at pH 7, which may have implications for future applications such as anthocyanin stabilization or the development of functional food ingredients.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China.
| |
Collapse
|
10
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
11
|
Exploring the interaction of myricetin with human alpha-2-macroglobulin: biophysical and in-silico analysis. J Biol Phys 2023; 49:29-48. [PMID: 36662317 PMCID: PMC9867608 DOI: 10.1007/s10867-022-09621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
Myricetin (MYR) is a bioactive secondary metabolite found in plants that is recognized for its nutraceutical value and is an essential constituent of various foods and beverages. It is reported to exhibit a plethora of activities, including antioxidant, antimicrobial, antidiabetic, anticancer, and anti-inflammatory. Alpha-2-macroglobulin (α2M) is a major plasma anti-proteinase that can inhibit proteinases of both human and non-human origin, regardless of their specificity and catalytic mechanism. Here, we explored the interaction of MYR-α2M using various biochemical and biophysical techniques. It was found that the interaction of MYR brings subtle change in its anti-proteolytic potential and thereby alters its structure and function, as can be seen from absorbance and fluorescence spectroscopy. UV spectroscopy of α2M in presence of MYR indicated the occurrence of hyperchromism, suggesting complex formation. Fluorescence spectroscopy reveals that MYR reduces the fluorescence intensity of native α2M with a shift in the wavelength maxima. At 318.15 K, MYR binds to α2M with a binding constant of 2.4 × 103 M-1, which indicates significant binding. The ΔG value was found to be - 7.56 kcal mol-1 at 298.15 K, suggesting the interaction to be spontaneous and thermodynamically favorable. The secondary structure of α2M does not involve any major change as was confirmed by CD analysis. The molecular docking indicates that Asp-146, Ser-172, Glu-174, and Tyr-180 were the key residues involved in α2M-MYR complex formation. This study contributes to our understanding of the function and mechanism of protein and flavonoid binding by providing a molecular basis of the interaction between MYR and α2M.
Collapse
|
12
|
Shen X, Xue S, Tan Y, Zhong W, Liang X, Wang J. Binding of Licochalcone A to Whey Protein Enhancing Its Antioxidant Activity and Maintaining Its Antibacterial Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15917-15927. [PMID: 36484772 DOI: 10.1021/acs.jafc.2c06125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Incorporating LA into whey protein by forming whey protein isolate-LA (WPI-LA) and polymerized whey protein-LA (PWP-LA) complexes is a good way to maintain its bioactivity and improve its functional performance within food matrices. Herein, we found that WPI and PWP were able to interact with LA as suggested by multi-spectroscopy, molecular docking, and molecular dynamics simulations. The interaction between whey protein and LA was a spontaneous non-covalent binding process, while PWP had a higher affinity for LA than WPI, resulting from its more negatively binding free energy with LA. Hydrogen bonds, van der Waals forces, and electrostatic interactions were responsible for WPI-LA interactions. Hydrophobic forces, van der Waals, and hydrogen bonds positively accounted for PWP-LA interactions. The antioxidant activity of LA was improved by complexation with whey proteins as identified by DPPH and ABTS. The antimicrobial efficiency of LA was partially screened by complexation with whey protein with MIC values increased by seven-fold compared to free LA but successfully recovered to its original efficiency upon isolating it from the complex. This work demonstrates the promising antioxidant and antibacterial activities of the whey protein-LA complex and provides a good candidate for developing a new class of natural functional ingredients for food systems.
Collapse
Affiliation(s)
- Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Yuying Tan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, Florida33612, United States
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| |
Collapse
|
13
|
Li M, Li J, Huang Y, Gao Z, Jiang Z, Mu Z. Insight into comparison of binding interactions and biological activities of whey protein isolate exposed prior to two structurally different sterols. Food Chem 2022; 405:134827. [DOI: 10.1016/j.foodchem.2022.134827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
14
|
Injectable redox albumin-based hydrogel with in-situ loaded dihydromyricetin. Colloids Surf B Biointerfaces 2022; 220:112871. [PMID: 36174492 DOI: 10.1016/j.colsurfb.2022.112871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Albumin is widely used in clinics due to its demonstrated biological safety and functional flexibility. Hydrogels derived from natural albumin possess high moisture retention ability and good biodegradability, making albumin ideal biomaterials compared with synthetic polymers. Herein, by reducing disulfide bonds in bovine serum albumin molecules with glutathione and re-oxidizing the free thiols using dimethyl sulfoxide (DMSO) as additional oxidant, three-dimensional network was assembled, leading to the formation of hydrogel. Meanwhile, DMSO is also an excellent solvent for many drugs, and the hydrophobic drug dihydromyricetin (DMY) can be well dissolved in DMSO. During the crosslinking reaction, DMSO participated in fabricating a porous albumin hydrogel network. At the same time, increased loading of DMY and sustained release of DMY were achieved, improving bioavailability of hydrophobic drug DMY. Rheological test and cytotoxicity assay proved excellent elasticity and biocompatibility of the hydrogel. Self-healing property and narrow-needle injection provided potential application of the hydrogel as biomedical materials. This method for formation hydrogels and in situ loading of drugs may expand to preparing other drug loaded hydrogels and find wide applications.
Collapse
|
15
|
Wang H, Ke L, Zhou J, Li G, Xu T, Rao P. Multi-spectroscopic, molecular docking and molecular dynamic simulation evaluation of hydroxychloroquine sulfate interaction with caseins and whey proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Li R, Pu C, Sun Y, Sun Q, Tang W. Interaction between soybean oleosome-associated proteins and phospholipid bilayer and its influence on environmental stability of luteolin-loaded liposomes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
El Deeb S, Al-Harrasi A, Khan A, Al-Broumi M, Al-Thani G, Alomairi M, Elumalai P, Sayed RA, Ibrahim AE. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc 2022; 10. [PMID: 35856854 DOI: 10.1088/2050-6120/ac82a6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
The in vitro panel of technologies to address biomolecular interactions are in play, however microscale thermophoresis is continuously increasing in use to represent a key player in this arena. This review highlights the usefulness of microscale thermophoresis in the determination of molecular and biomolecular affinity interactions. This work reviews the literature from January 2016 to January 2022 about microscale thermophoresis. It gives a summarized overview about both the state-of the art and the development in the field of microscale thermophoresis. The principle of microscale thermophoresis is also described supported with self-created illustrations. Moreover, some recent advances are mentioned that showing application of the technique in investigating biomolecular interactions in different fields. Finally, advantages as well as drawbacks of the technique in comparison with other competing techniques are summarized.
Collapse
Affiliation(s)
- Sami El Deeb
- Technische Universitat Braunschweig, Braunschweig, Braunschweig, Niedersachsen, 38106, GERMANY
| | | | - Ajmal Khan
- University of Nizwa, Nizwa, Nizwa, 616, OMAN
| | | | | | | | | | - Rania A Sayed
- Pharmaceutical analytical chemistry department, Zagazig University, Zagazig, Zagazig, 44519, EGYPT
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry, Port Said University, Port Said, Port Said, 42526, EGYPT
| |
Collapse
|
18
|
Nanocarriers for β-Carotene Based on Milk Protein. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Xue H, Cui P, Tan J, Zhang G, Ge S, Cai X. Separation of principal component dihydromyricetin from Ampelopsis grossedentata by high-speed counter-current chromatography and its interaction with corn starch. J Food Sci 2022; 87:2350-2363. [PMID: 35470872 DOI: 10.1111/1750-3841.16128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
Ampelopsis grossedentata (AG) is an industrial crop in the grape family, which has been used as a dual-purpose plant for medicine and tea with high medicinal values. However, little is reported on the separation technology of active components from AG and processing technology of AG products. High-speed counter-current chromatography (HSCCC) was applied to separate the principal component dihydromyricetin (DMY) from AG. DMY is added to starch-based products to improve food quality. The interaction between corn starch (CS) and DMY was investigated to predict and control the structure and function of starch-based foods. Results show that DMY with 97.13% purity was successfully obtained by HSCCC using a solvent system composed of light petroleum-ethyl acetate-methanol-water-trichloroacetic acid (1:3:1:3:0.01, v/v/v/v/v). Fourier-transform infrared spectroscopy (FT-IR) exhibits that the interactions between CS and DMY included hydrogen bond and noncovalent bond. X-ray diffraction (XRD) shows that DMY could increase the relative crystallinity of CS. Low-field nuclear magnetic resonance results (LF-NMR) imply that DMY decreased the spin relaxation time (T2 ) and inhibited the mobility of free water. Atomic force microscopy (AFM) results suggest that DMY changed the surface morphology of CS through hydrogen bond interaction. Moreover, the results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) indicate that DMY could enlarge the pores and change the microstructure of CS-DMY complexes. The findings promote the development of industrial CS-based products and utilization of corn crop.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Pengshan Cui
- School of Quality and Technical Supervision, Hebei University, Lianchi District, Baoding, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Guowei Zhang
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Lianchi District, Baoding, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, China
| |
Collapse
|
20
|
Xi Y, Wang W, Xu N, Shi C, Xu G, Sun J, He H, Jiang T. Myricetin loaded nano-micelles delivery system reduces bone loss induced by ovariectomy in rats through inhibition of osteoclast formation. J Pharm Sci 2022; 111:2341-2352. [PMID: 35341721 DOI: 10.1016/j.xphs.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
In recent years, much attention has been paid to the therapeutic effects of phytochemicals on osteoporosis. Other studies have shown that myricetin (MY) could promote osteogenic activity and inhibit osteoclastic effect, albeit little is known about effect of MY micellar system on osteoporosis. Therefore, we sought to discuss the therapeutic effect and mechanism of MY-loaded bone-targeting micelles on osteoporosis induced by ovariectomy (OVA) in rats. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles were prepared via ethanol injection method, while in vitro release study, bone targeting, pharmacokinetic studies, and the effect on proliferation of osteoblasts were investigated. Further, the therapeutic effect on osteoporosis was studied through ovariectomized rats. Compared with free MY, oral bioavailability of AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles in rats was increased by 3.54 times. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles exhibited bone targeting potential, and could significantly increase the activity of alkaline phosphatase and promote the proliferation of osteoblasts. Importantly, AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles mainly regulated bone metabolism by inhibiting bone resorption, thereby improving the symptoms of osteoporosis in OVA rats. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles substantially enhanced the oral bioavailability of MY and demonstrated good bone targeting capability, thereby suggesting its prospect as carrier for osteoporotic improvement in OVA rats.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weiheng Wang
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ning Xu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Changgui Shi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Guohua Xu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jinxing Sun
- Department of Spine Surgery, Shandong Wendeng Osteopathic Hospital, Weihai 264200, China
| | - Hailong He
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Tingwang Jiang
- Department of Key Laboratory, The Affiliated Changshu Hospital of Xuzhou Medical School, The Second People's Hospital of Changshu, Changshu 215500, China.
| |
Collapse
|
21
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Zhang H, Caprioli G, Hussain H, Khoi Le NP, Farag MA, Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFOOD 2021. [DOI: 10.53365/efood.k/143518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
Collapse
|
23
|
Yan M, Dong S, Shen X, Lu C, Ye H, Zhang T. Lactoferrin-thymol complex for the disinfection of gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Food Funct 2021; 12:11165-11173. [PMID: 34633016 DOI: 10.1039/d1fo02153b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Seeking all-nature derived antibacterial agents with effective disinfection function, high human safety as well as environment-friendly characteristics are highly required in the food industry. Herein, we report the lactoferrin-thymol (LF-Thy) complex as an effective killing agent against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The multi-spectroscopy results clearly demonstrate the combination of LF and Thy to form the LF-Thy complex, accompanied with LF conformation variations including the increase in the hydrophobicity of amino acid residues and changes in the types of secondary conformation distribution in LF. Molecular docking results show that LF exhibits three possible binding sites and five predicted stable binding modes for Thy with the help of hydrogen bonding and hydrophobic interactions. Moreover, LF-Thy demonstrated a significantly higher antibacterial ability compared to LF and displays effective disinfection function against E. coli and S. aureus. The minimum inhibitory concentration (MIC) of LF toward E. coli and S. aureus is >40 mg mL-1 and 40 mg mL-1, which decreases to 10 mg mL-1 and 5 mg mL-1 after combination with Thy, respectively. This work demonstrates the promising antibacterial activities of the LF-Thy complex and provides an alternative agent for combating bacterial infection in the food industry, which holds great potential for promoting the development of the all-natural healthcare food complex.
Collapse
Affiliation(s)
- Mi Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Shuyue Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Chengwen Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
24
|
Yan M, Diao M, Zhang C, Shen X, Zhan X, Xi C, Zhao C, Zhang T. Lactoferrin-ginsenoside Rg3 complex ingredients: Study of interaction mechanism and preparation of oil-in-water emulsion. Food Chem 2021; 363:130239. [PMID: 34130098 DOI: 10.1016/j.foodchem.2021.130239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Revealing the interaction mechanism between bovine lactoferrin (LF) and 20(S)-ginsenoside Rg3 (Rg3), thereby introducing Rg3 to LF and even into stable emulsions will contribute significantly to food valorization and food industry. Adding Rg3 to LF caused slight absorbance increment and static fluorescence quench of LF, implying the successful combination. Synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectroscopy indicated the conformation changing of LF after binding with Rg3. Thermodynamic analysis showed that the binding happened spontaneously to form a LF-Rg3 complex with a molar ratio of 1:1, which was mainly driven by hydrogen bonding and van der Waals force. Molecular docking simulation provided extensive information about the optimized binding sites and the involved interactions. Finally, we prepared stable LF-Rg3 oil-in-water emulsion, showing great potential in foods and beverages. This work prepares all-natural functional ingredients, and also diversifies the effective food molecule-based delivery systems for LF and Rg3.
Collapse
Affiliation(s)
- Mi Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Chunhong Zhang
- Navy Special Medical Center, The Second Military Medical University, Shanghai 200000, China
| | - Xue Shen
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Xin Zhan
- College of Food Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Chunyu Xi
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
25
|
Modelling studies reveal the importance of the C-terminal inter motif loop of NSP1 as a promising target site for drug discovery and screening of potential phytochemicals to combat SARS-CoV-2. J Mol Graph Model 2021; 106:107920. [PMID: 33933885 PMCID: PMC8053965 DOI: 10.1016/j.jmgm.2021.107920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 pandemic causative SARS-CoV-2 coronavirus is still rapid in progression and transmission even after a year. Understanding the viral transmission and impeding the replication process within human cells are considered as the vital point to control and overcome COVID-19 infection. Non-structural Protein 1, one among the proteins initially produced upon viral entry into human cells, instantly binds with the human ribosome and inhibit the host translation process by preventing the mRNA attachment. However, the formation of NSP1 bound Ribosome complex does not affect the viral replication process. NSP1 plays an indispensable role in modulating the host gene expression and completely steals the host cellular machinery. The full-length structure of NSP1 is essential for the activity in the host cell and importantly the loop connecting N and C-terminal domains are reported to play a role in ribosome binding. Due to the unavailability of the experimentally determined full-length structure of NSP1, we have modelled the complete structure using comparative modelling and the stability and conformational behaviour of the modelled structure was evaluated through molecular dynamics simulation. Interestingly, the present study reveals the significance of the inter motif loop to serves as a potential binding site for drug discovery experiments. Further, we have screened the phytochemicals from medicinal plant sources since they were used for several hundred years that minimizes the traditional drug development time. Among the 5638 phytochemicals screened against the functionally associated binding site of NSP1, the best five phytochemicals shown high docking score of −9.63 to −8.75 kcal/mol were further evaluated through molecular dynamics simulations to understand the binding affinity and stability of the complex. Prime MM-GBSA analysis gave the relative binding free energies for the top five compounds (dihydromyricetin, 10-demethylcephaeline, dihydroquercetin, pseudolycorine and tricetin) in the range of −45.17 kcal/mol to −37.23 kcal/mol, indicating its binding efficacy in the predicted binding site of NSP1. The density functional theory calculations were performed for the selected five phytochemicals to determine the complex stability and chemical reactivity. Thus, the identified phytochemicals could further be used as effective anti-viral agents to overcome COVID-19 and as well as several other viral infections.
Collapse
|