1
|
Durgaparameshwari M, Kaviya K, Prabakaran DS, Santhamoorthy M, Rajamanikandan R, Al-Ansari MM, Mani KS. Designing a Simple Quinoline-Based Chromo-Fluorogenic Receptor for Highly Specific Quantification of Copper (II) Ions: Environmental and Bioimaging Applications. LUMINESCENCE 2024; 39:e70068. [PMID: 39710514 DOI: 10.1002/bio.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Many industries use copper metal ions (Cu2+ ions), and their salts are utilized as supplemental materials in both agriculture and medicine. Identifying and monitoring these Cu2+ ions in biological and environmental specimens is crucial due to their association with several health issues. In this investigation, we have designed a simple quinoline-based receptor (E)-3-(((2,4-di-tert-butyl-5-hydroxyphenyl)imino)methyl)-6-methoxyquinolin-2(1H)-one (QAP) containing imine functional groups to inspect its capability to identify metal ions in a semi-aqueous medium. The photophysical characteristics and structural confirmation of the receptor QAP were investigated using various spectroscopic techniques. Among various metal ions, the receptor QAP displayed an intense color shift from slightly yellow to strong yellow in the existence of Cu2+ ions, as visualized by the nude eye. Furthermore, the fluorescence spectral maximum wavelength at 485 nm and the strong cyan fluorescence color were quenched upon introducing Cu2+ ions. The alteration in the spectral and colorimetric features of QAP with Cu2+ ions is due to coordination complex formation. The present sensor shows the linear range from 3 to 69 μM, subsequent in a computed limit of detection as 3.16 nM, which is much lower than that of the maximum threshold of Cu2+ ions in drinking water set by WHO. Therefore, the receptor can respond to Cu2+ ions sensing in two ways: by changing color and by quenching fluorescence. The binding mode of the Cu2+ ions to the functional groups of the receptor QAP is a 1:1 stoichiometry, according to ESI-mass, Job's plot analysis, and density functional theory (DFT) computations. The practical utility of the fluorescent receptor QAP was applied for Cu2+ ions determination in environmental samples (drinking, tap, and dam water) and cancer cells (HeLa cells).
Collapse
Affiliation(s)
| | - Karuppaiyan Kaviya
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - D S Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madhappan Santhamoorthy
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kailasam Saravana Mani
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Wang Y, Li Y, Cao J, Yang X, Huang J, Huang M, Gu S. Research Progress of Fluorescent Probes for Detection of Glutathione (GSH): Fluorophore, Photophysical Properties, Biological Applications. Molecules 2024; 29:4333. [PMID: 39339330 PMCID: PMC11434280 DOI: 10.3390/molecules29184333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular biothiols, including cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play a critical role in many physiological and pathological processes. Among them, GSH is the most abundant non-protein mercaptan (1-10 mM) in cells, and the change in GSH concentration level is closely related to the occurrence of many diseases, such as Parkinson's disease, Alzheimer's disease, and neurological diseases. Fluorescent probes have attracted much attention due to their advantages of high specificity, high sensitivity, high selectivity, low cost, and high quantum yield. Methods that use optical probes for selective detection of GSH in vitro and in vivo are in high demand. In this paper, we reviewed the most recent five years of research on fluorescence probes for the detection of GSH, including the specific detection of GSH, dual-channel identification of GSH and other substances, and the detection of GSH and other biothiols. According to the type of fluorophore, we classified GSH fluorescent probes into eight classes, including BODIPY, 1,8-Naphthalimide, coumarin, xanthene, rhodamine, cyanine, benzothiazoles, and others. In addition, we roundly discuss the synthesis, detection mechanism, photophysical properties, and biological applications of fluorescent probes. We hope that this review will inspire the exploration of new fluorescent probes for GSH and other related analyses.
Collapse
Affiliation(s)
- Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Yanfei Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Jinbo Cao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 511400, China
| | - Xiyan Yang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Jiaxiang Huang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Mingyue Huang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Shaobin Gu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| |
Collapse
|
3
|
Yu X, Huang Y, Zhang N, Zan Q, Wang X, Jin Z, Fan L, Dong C, Zhang Y. A lipid droplet-targeting fluorescent probe for specific H 2S imaging in biosamples and development of smartphone platform. Anal Chim Acta 2023; 1277:341679. [PMID: 37604615 DOI: 10.1016/j.aca.2023.341679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
Hydrogen sulfide (H2S), a significant gas signal molecule, is closely related to various physiological/pathological processes. The monitoring of H2S is crucial in understanding the occurrence and development of diseases such as cancers. Emerging evidence suggests that abnormal regulation of Lipid droplets (LDs) is associated with many human diseases. For example, cancer cells are characterized by the abnormal accumulation of LDs. Therefore, understanding the relationship between LDs and cancer is of great significance for developing therapies against cancer. To address this challenge, we designed and developed a LD-targeting and H2S-activated probe (BTDA-DNB) by engineering a 2,4-dinitrophenyl ether (DNBE) as the H2S reactive site. In the presence of H2S, a strongly fluorescent emitter, 3-(benzo[d]thiazol-2-yl)-N,N-diethyl-2-imino-2H-chromen-7-amine (BTDA) was obtained with the leaving of DNBE group. BTDA-DNB displayed favorable sensitivity, selectivity and functioning well at physiological pH. The probe features excellent LD-targeting specificity and low cellular toxicity. The practical applications of LD-targeting probe BTDA-DNB as H2S probe in living cells, cancer tissues and Arabidopsis seedling have been evaluated. The excellent imaging performance demonstrates a potential ability for cancer diagnosis. Benefitted from the excellent performance on visual recognition H2S, a robust smartphone-integrated platform for H2S analysis was also successfully established.
Collapse
Affiliation(s)
- Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Ning Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China; College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Qi Zan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Xiaodong Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.
| |
Collapse
|
4
|
Zhao Q, Li Y, Wei W, Huang J, Lu D, Liu S, Shi X. A ratiometric fluorescence-based colorimetric sensor for the portable analysis of antioxidants via smartphone. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Huang Y, Chen W, Dong M, Li N, Chen L, Ling L, Xu Q, Lin M, Xing Z. A novel fluorescence probe for the recognition of Cd 2+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122979. [PMID: 37295381 DOI: 10.1016/j.saa.2023.122979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
A facile fluorescence probe BQBH was synthesized and investigated on its spectrum property. The result showed that the BQBH had high sensitivity and selectivity for Cd2+ with lowest detection determined as 0.14 μM by fluorescence response. The 1: 1 binding ratio between BQBH and Cd2+ was determined by Job's plot, and the binding details were further confirmed by 1H NMR titration, FT-IR spectrum and HRMS analysis. The applications including on test paper, smart phone and cell image were all also investigated.
Collapse
Affiliation(s)
- Yuntong Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Weizhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong 521000, China
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Nana Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Lianghui Chen
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Li Ling
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Min Lin
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong 521000, China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
6
|
Liu Q, Li S, Wang Y, Yang L, Yue M, Liu Y, Ye F, Fu Y. Sensitive fluorescence assay for the detection of glyphosate with NACCu 2+ complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163548. [PMID: 37080305 DOI: 10.1016/j.scitotenv.2023.163548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate is widely used as an herbicide in weed control. However, the excessive use and residue of glyphosate adversely affect the environment. Thus, a rapid and highly sensitive system must be developed for glyphosate detection. Herein, a novel turn-on fluorescent probe was designed and synthesized for glyphosate, that is N-butyl-1,8-naphthalimide-4-hydrazino-6-isopropyl-chromone (NAC). The fluorescence of NAC was quenched by the addition of Cu2+ to form NACCu2+ complex in dimethyl sulfoxide/2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (DMSO/HEPES, 9/1, v/v, pH = 7.0). Upon the addition of glyphosate, the fluorescence of NACCu2+ was recovered through chelation between Cu2+ and glyphosate. The NACCu2+ complex exhibited the desired linearity of glyphosate concentration under optimum conditions in the range of 0-40 μM with a low detection limit of 36 nM. Based on competitive coordination, NACCu2+ exhibited good sensitivity and selectivity for glyphosate. Moreover, NAC was successfully utilized to detect glyphosate in tap water, local water from Songhua River, soil, maize, and soybean with convenient operations, indicating a promising application in pesticide residue detection.
Collapse
Affiliation(s)
- Qiuhuan Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Shijie Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujiong Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Liu Yang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingli Yue
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yulong Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Fei Ye
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Rajamanikandan R, Shanmugaraj K, Ilanchelian M, Ju H. Cysteamine-decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide ions using the smart-phone color ratio and for catalytic reduction of 4-nitrophenol. CHEMOSPHERE 2023; 316:137836. [PMID: 36642146 DOI: 10.1016/j.chemosphere.2023.137836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this paper, we have reported the cyanide ions (CN-) sensing in environmental water samples using cysteamine-capped gold nanoparticles (Cyst-AuNPs) by spectrophotometric, colorimetric, and smartphone-based RGB color detection. The surface plasmon resonance shift at around 525 nm for the Cyst-AuNPs could be used to detect quantitatively the amounts of CN- with concomitant alteration of their color from wine red to purple visualized by the naked eye. For the first time, the Cyst-AuNPs-based visual sensing of CN- was performed using smartphone-based detection with its detection limit of 159 × 10-9 M, ten times lower than that of the highest tolerance level (2 × 10-6 M) permitted by the world health organization. The Cyst-AuNPs displayed excellent specificity for detecting the concentration of 30 × 10-6 M even amid the presence of other interfering inorganic anions with their concentrations about five times higher than it. Environmental real water samples were used to arrange the three different CN- concentrations for plasmon-based colorimetric detection and smartphone-based method. Additionally, the catalytic performance of Cyst-AuNPs was demonstrated for the fast catalytic conversion of hazardous 4-nitrophenol (selected environmental contaminant) to the analogous amino aromatic compounds. A chemical kinetic study showed the conversion rate to be estimated as 1.65 × 10-2 s-1. Cyst-AuNPs can find an application in colorimetric sensing of CN- while being able to be utilized as a catalytic nanomaterial for ecological remedies associated with health care.
Collapse
Affiliation(s)
| | - Krishnamoorthy Shanmugaraj
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Universidad de Concepción, Concepción, Chile; Faculty of Engineering and Science, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile
| | | | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
8
|
Rajamanikandan R, Sasikumar K, Kosame S, Ju H. Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020290. [PMID: 36678042 PMCID: PMC9863761 DOI: 10.3390/nano13020290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Water toxicity, one of the major concerns for ecosystems and the health of humanity, is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are considered one of the most harmful elements required to be monitored in water. The need for cyanide sensing and monitoring has tempted the development of sensing technologies without highly sophisticated instruments or highly skilled operations for the objective of in-situ monitoring. Recent decades have witnessed the growth of noble metal nanomaterials-based sensors for detecting cyanide ions quantitatively as nanoscience and nanotechnologies advance to allow nanoscale-inherent physicochemical properties to be exploited for sensing performance. Particularly, noble metal nanostructure e-based optical sensors have permitted cyanide ions of nanomolar levels, or even lower, to be detectable. This capability lends itself to analytical application in the quantitative detection of harmful elements in environmental water samples. This review covers the noble metal nanomaterials-based sensors for cyanide ions detection developed in a variety of approaches, such as those based on colorimetry, fluorescence, Rayleigh scattering (RS), and surface-enhanced Raman scattering (SERS). Additionally, major challenges associated with these nano-platforms are also addressed, while future perspectives are given with directions towards resolving these issues.
Collapse
|
9
|
Effect of electron donors on the photophysical and theoretical properties of BODIPY dyes based on tetrazolo[1,5-a]quinoline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Wang Z, Jia J, Huo F, Zhang Y, Chao J. A fluorescent probe for monitoring Cys fluctuations in the oxidative stress environment simulated by Cu2+ or H2O2. Bioorg Chem 2022; 120:105618. [DOI: 10.1016/j.bioorg.2022.105618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/31/2022]
|
11
|
Rajamanikandan R, Ilanchelian M. Simple smartphone merged rapid colorimetric platform for the environmental monitoring of toxic sulfide ions by cysteine functionalized silver nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Guo X, Gao W, Cheng ZZ, Huang YY, Yao ZY, Li QZ, Qiao X, Xie CZ, Xu JY. Highly selective fluorescent detection platform based on isoquinoline Schiff base ligand monitors glutathione in biological systems. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Sun F, Yang L, Li S, Wang Y, Wang L, Li P, Ye F, Fu Y. New Fluorescent Probes for the Sensitive Determination of Glyphosate in Food and Environmental Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12661-12673. [PMID: 34672544 DOI: 10.1021/acs.jafc.1c05246] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a dual-functional probe, 2-(benzothiazol)-4-(3-hydroxy-4-methylphenyl) imino phenol (BHMH), was synthesized and characterized for the simultaneous detection of Cu2+ and Fe3+ in dimethyl sulfoxide/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (DMSO/HEPES) (1:4, v/v, pH = 6.0). The limits of detections (LODs) for Cu2+ and Fe3+ were 9.05 and 48 nM, respectively. Based on the competitive coordination, the complex BHMH-Cu2+/Fe3+ exhibited good sensitivity and selectivity for glyphosate. The LODs of BHMH-Cu2+ and BHMH-Fe3+ for glyphosate were 0.41 and 0.63 μM, respectively. The probe quantitatively detected glyphosate in tap water, Songhua River water, local water and soil, and food samples. The colorimetric on-site glyphosate sensing through the probe BHMH-Cu2+ was also studied based on smartphones. BHMH and BHMH-Cu2+/Fe3+ exhibited outstanding imaging capabilities for Cu2+, Fe3+, and glyphosate in living cells with low cytotoxicity, especially the first time for glyphosate.
Collapse
Affiliation(s)
- Fang Sun
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shijie Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yubo Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ludi Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ping Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
14
|
Liu J, Fu T, Wu F, Wang H. Ratiometric fluorescence and smartphone dual-mode detection of glutathione using carbon dots coupled with Ag +-triggered oxidation of o-phenylenediamine. NANOTECHNOLOGY 2021; 32:445501. [PMID: 34330104 DOI: 10.1088/1361-6528/ac1978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Developing ratiometric fluorescence and smartphone dual-mode bioanalysis methods is important but challenging. A ratiometric fluorescence method for determining glutathione (GSH) using carbon dots (CDs) and Ag+-triggered o-phenylenediamine (OPD) oxidation is described here. Ag+oxidizes OPD to give 2,3-diaminophenazine (oxOPD), which effectively quenches CD fluorescence at 436 nm through the inner filter effect and causes a new emission peak at 561 nm. GSH chelates with Ag+and prevents the Ag+oxidizing OPD and therefore effectively preserves CD emission at 436 nm (blue) and allows only weak oxOPD fluorescence at 561 nm (orange) to occur. The oxOPD to CD fluorescence intensity ratio decreased linearly as the GSH concentration increased in the range 0-150 nM, and the detection limit was 15 nM. The ratiometric fluorescence probe lit with an ultraviolet lamp clearly changed color from orange to blue as the GSH concentration increased. An image was acquired using a smartphone camera and converted into digital values. The blue and red channel ratio was calculated and used to quantify GSH. The method therefore allows dual-mode detection of GSH.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Ting Fu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Fangfei Wu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Huaxin Wang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
15
|
Liu J, Wang ZQ, Mao GJ, Jiang WL, Tan M, Xu F, Li CY. A near-infrared fluorescent probe with large Stokes shift for imaging Cys in tumor mice. Anal Chim Acta 2021; 1171:338655. [PMID: 34112439 DOI: 10.1016/j.aca.2021.338655] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 11/20/2022]
Abstract
Cysteine (Cys), a kind of small molecule biological thiol, not only involves in the regulation of physiological processes, but also is considered a marker of tumor. However, it is challenging to develop suitable probe for detecting Cys in tumors. In this paper, a near-infrared (NIR) fluorescent probe named IX for Cys has been designed and synthesized. The probe shows a NIR emission peak at 770 nm with large Stokes shift (180 nm) upon adding Cys. It displays high sensitivity to Cys with 6-fold increase of fluorescence intensity. Meanwhile, IX has the high selectivity to Cys over other potential interference such as Hcy and GSH, which have similar structure with Cys. In addition, a possible mechanism of fluorescence enhancement is the reaction of IX with Cys to release IX-OH, which is verified by fluorescence spectra, MS and HPLC. Next, IX can selectively image Cys in HCT-116 cells thanks to the low cytotoxicity. Most important of all, the fluorescent probe IX has visualized Cys in HCT116-xenograft tumor mice due to the near-infrared properties with large Stokes shift.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Min Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
16
|
Knight JR, Wang Y, Xu S, Chen W, Berkman CE, Xian M. A modular template for the design of thiol-triggered sensors and prodrugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119072. [PMID: 33128946 PMCID: PMC7736145 DOI: 10.1016/j.saa.2020.119072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
A unique reaction between thiols (RSH) and alkyl sulfonylbenzothiazole was discovered. This reaction was specific for thiols and produced a sulfinic acid (RSO2H) as the intermediate, which further triggered an intramolecular cyclization to release a -OH containing payload. This reaction was used to develop thiol-triggered fluorescent sensors and prodrugs. The modular design of this template provides tunability of the release profiles of the payloads.
Collapse
Affiliation(s)
| | - Yingying Wang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|