1
|
Shi J, Wu S, Xue Y, Xie Q, Danzeng Q, Liu C, Zhou CH. Fluorescence/colorimetric dual-signal sensor based on carbon dots and gold nanoparticles for visual quantification of Cr 3. Mikrochim Acta 2024; 191:571. [PMID: 39223328 DOI: 10.1007/s00604-024-06645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A convenient and sensitive dual-signal visualization method is constructed for detection of trivalent chromium ions (Cr3+) based on fluorescent carbon dots (CDs) and glutathione-modified gold nanoparticles (GSH-Au NPs). The fluorescence of CDs can be quenched by GSH-Au NPs due to the inner filter effect. Cr3+ induces aggregation of GSH-Au NPs because of the coordination with GSH on the surface of Au NPs, leading to the red shift of surface plasmon resonance absorption of Au NPs that provides a "turn-on" fluorescence and colorimetric assay for Cr3+. The fluorescence/colorimetric dual signal detection shows high sensitivity for Cr3+ with wide detection linear ranges (0.5-70 μM for fluorescence detection and 2-50 μM for colorimetric detection) and low detection limits (0.31 μM for fluorescence detection and 0.30 μM for colorimetric detection). Besides, the method has high selectivity for Cr3+ and can be used for detection of Cr3+ in lake water and tap water samples, showing great potential for visual detection of environmental Cr3+.
Collapse
Affiliation(s)
- Jinyu Shi
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Suyi Wu
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yu Xue
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qing Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Qunzeng Danzeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Chuan-Hua Zhou
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
2
|
Xu J, Yang Y, Du J, Lu H, Gao W, Gong H, HanXiao. Deep eutectic solvent-based manganese dioxide nanosheets composites for determination of DNA by a colorimetric method. BMC Chem 2023; 17:15. [PMID: 36907907 PMCID: PMC10010034 DOI: 10.1186/s13065-023-00922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Nucleic acid is the carrier of genetic information and the keymolecule in life science. It is important to establish a simple and feasible method for nucleic acid quantification in complex biological samples. METHODS Four kinds of hydrogen bond acceptors (choline chloride (ChCl), L-carnitine, tetrabutylammonium chloride (TBAC) and cetyltrimethylammonium bromide (CTAB)) were used to synthesize deep eutectic solvents (DESs) with hexafluoroisopropanol (HFIP). DESs based manganese dioxide (MnO2) nanosheets composites was synthesized and characterized. DNA concentration was determined by a UVVis spectrometer. The mechanism of DNA-DES/MnO2 colorimetric system was further discussed. RESULTS The composite composed of DES/MnO2 exhibited excellent oxidase-like activity and could oxidize 3,3',5,5' -tetramethylbenzidine (TMB) to produce a clear blue change with an absorbance maximum at 652 nm. When DNA is introduced, the DNA can interact with the DES by hydrogen bonding and electrostatic interactions, thereby inhibiting the color reaction of DES/MnO2 with TMB. After condition optimization, ChCl/HFIP DES in 1:3 molar ratio was used for the colorimetric method of DNA determination. The linear range of DNA was 10-130 µg/mL and exhibited good selectivity. CONCLUSION A colorimetric method based on DES/MnO2 was developed to quantify the DNA concentration. The proposed method can be successfully used to quantify DNA in bovine serum samples.
Collapse
Affiliation(s)
- Jia Xu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China.
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Juan Du
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Hui Lu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Wenqi Gao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - Hongjian Gong
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China
| | - HanXiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, Wuhan, China.
| |
Collapse
|
3
|
Yu W, Li Q, He L, Zhou R, Liao L, Xue J, Xiao X. Green synthesis of CQDs for determination of iron and isoniazid in pharmaceutical formulations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:944-950. [PMID: 36723197 DOI: 10.1039/d2ay01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Camphor leaves were used as the precursor for the hydrothermal synthesis of carbon quantum dots. The preparation method is simple and rapid, and the raw material is environmentally friendly and easy to obtain. Without additional modification, the carbon quantum dots were used as fluorescent probes for the sensitive and selective detection of Fe3+ and isoniazid at different excitation wavelengths. For Fe3+, at the excitation wavelength of 320 nm, the ratio of fluorescence intensity of CQD solution after adding Fe3+ to CQD solution without Fe3+ addition, F/F0, and Fe3+ concentration showed a good linear relationship in the range of 2.72 × 10-5 to 1.00 × 10-4 mol L-1 (R2 = 0.9912), and the limit of detection was 8.16 μmol L-1. For isoniazid, at the excitation wavelength of 270 nm, the ratio of fluorescence intensity of CQDs solution with isoniazid to CQDs solution without isoniazid, F/F0, and isoniazid concentration showed good linear relationships in the range of 3.81 × 10-6 to 1.00 × 10-5 mol L-1 (R2 = 0.9941) and 1.00 × 10-5 to 2.10 × 10-4 mol L-1 (R2 = 0.9910) respectively, and the limit of detection was 1.14 μmol L-1. A fluorescence method for the determination of Fe and isoniazid content was proposed. The method has been used to detect iron in iron supplement tablets and isoniazid in isoniazid tablets with satisfactory results.
Collapse
Affiliation(s)
- Wenzhan Yu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| | - Qian Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Liqiong He
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Renlong Zhou
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Jinhua Xue
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xilin Xiao
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
4
|
Vajubhai GN, Kailasa SK. Glutathione-ascorbic acid-functionalized molybdenum oxide quantum dots-based fluorescent sensor for the detection of isoniazid drug in pharmaceutical samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122041. [PMID: 36413911 DOI: 10.1016/j.saa.2022.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, glutathione-ascorbic acid-functionalized molybdenum oxide quantum dots (GSH-AA-MoOx QDs) are synthesized by the conventional method and used as a fluorescent probe for the rapid detection of isoniazid drug in pharmaceutical samples. Ascorbic acid and glutathione are used as surface ligands for the modification of MoOx QDs. The as-synthesized GSH-AA-MoOx QDs display λEm at 416 nm when applied λEx at 330 nm. The introduction of isoniazid drug into GSH-AA-MoOx QDs solution results the assembly of GSH-AA-MoOx QDs-isoniazid nanoarchitectures, leading to quench λEm at 416 nm. Thus, GSH-AA-MoOx QDs can work as a fluorescent sensor for the rapid identification of isoniazid in real samples. The as-prepared GSH-AA-MoOx QDs not only allows superior analytical features (rapidity, and selectivity) toward isoniazid with the detection limit of 94 nM, but also displays fluorescence "turn-off" response for assaying of isoniazid in real samples (pharmaceutical and biofluids). Finally, GSH-AA-MoOx QDs are highly promising fluorescent probe for the rapid detection of isoniazid in real samples.
Collapse
Affiliation(s)
- Ghinaiya Nirav Vajubhai
- Department of Chemistry, Sardar Vallbhbhai National Institute of Technology, Surat 395 007, Gujarat, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallbhbhai National Institute of Technology, Surat 395 007, Gujarat, India.
| |
Collapse
|
5
|
Li LS, Zhang YX, Gong W, Li J. Novel β-cyclodextrin doped carbon dots for host-guest recognition-assisted sensing of isoniazid and cell imaging. RSC Adv 2022; 12:30104-30112. [PMID: 36329931 PMCID: PMC9585529 DOI: 10.1039/d2ra05089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
In the present study, novel β-cyclodextrin doped carbon dots (CCDs) were prepared via a simple one-pot hydrothermal method at a mild temperature (140 °C), using mixtures of β-cyclodextrin and citric acid as precursors. By characterizing the chemical properties of CCDs prepared at 140 °C and 180 °C, the importance of low-temperature reaction for preservation of the specific structure of β-CD was elucidated. The CCDs showed excellent optical properties and were stable to changes in pH, ionic strength and light irradiation. Since the fluorescence of the CCDs could be selectively quenched by isoniazid (INZ) through specific host-guest recognition effects, a convenient isoniazid fluorescence sensor was developed. Under the optimal conditions, the sensor exhibited a relatively low detection limit of 0.140 μg mL-1 and a wide detection range from 0.2 μg mL-1 to 50 μg mL-1 for INZ detection. Furthermore, the sensor was employed successfully for the determination of INZ in urine samples with satisfactory recovery (91.1-109.5%), displaying potential in clinical applications. Finally, low cytotoxicity of the prepared CCDs was confirmed using the CCK-8 method, followed by application in HepG2 cell imaging.
Collapse
Affiliation(s)
- Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University Haikou 570228 China
| | - Ying-Xia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University Haikou 570228 China
| | - Wei Gong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts & Science Xiangyang 441021 China
| | - Jing Li
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts & Science Xiangyang 441021 China
| |
Collapse
|
6
|
Zuo YN, Xia Y, Li Y, Sun J, Zhao XE, Zhu S. Cascade amplification strategy combined with analyte-triggered fluorescence switching of dual-quenching system for highly sensitive detection of isoniazide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121234. [PMID: 35413532 DOI: 10.1016/j.saa.2022.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
A sensitive fluorescence sensing platform consisting of manganese dioxide nanosheets (MnO2) and gold nanoparticles (AuNPs) as dual nanoquenchers has been constructed to detect isoniazid combined with analyte-triggered cascade reactions. The fluorescence of 2,3-diaminophenazine (DAP) is quenched simultaneously by MnO2 and AuNPs via inner filter effect. MnO2 is decomposed by isoniazid to generate Mn2+, which makes AuNPs aggregated. The quenching abilities of both the decomposed MnO2 and aggregated AuNPs are inhibited, causing remarkable fluorescence recovery. The usage of dual nanoquenchers enhances the quenching efficiency and reduces the fluorescence background. Moreover, the isoniazid-triggered cascade reaction further amplifies the readout signal. Thus, this strategy exhibits higher sensitivity towards the detection of isoniazid. Compared with MnO2-based fluorescence assay, this strategy possesses lower limit of detection. This strategy has been successfully used to detect isoniazid in pharmaceutical preparations, which is of great significance for drug analysis.
Collapse
Affiliation(s)
- Ya-Nan Zuo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Yanyu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City 810001, Qinghai, China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| |
Collapse
|
7
|
Cu-Fe Prussian blue analog nanocube with intrinsic oxidase mimetic behaviour for the non-invasive colorimetric detection of Isoniazid in human urine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Azizi N, Hallaj T, Samadi N. A turn off-on fluorometric and paper based colorimetric dual-mode sensor for isoniazid detection. LUMINESCENCE 2021; 37:153-160. [PMID: 34741490 DOI: 10.1002/bio.4156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022]
Abstract
In the present study, Cobalt oxyhydroxide (CoOOH) nanosheets were applied for establishing a dual fluorometric and smartphone-paper-based colorimetric method to detect isoniazid. CoOOH nanosheets quenched the fluorescence emission of sulfur and nitrogen co-doped carbon dots (S,N-CDs) due to inner filter effect (IFE). The quenched fluorescence intensity of S,N-CDs restored in the presence of isoniazid due to destroying CoOOH nanosheets by this drug. Moreover, with adding isoniazid the solution color of CoOOH nanosheets altered from brownish yellow to pale yellow. We exploited these facts to design a turn off-on fluorometric and paper based colorimetric sensor for isoniazid measurement at the range of 0.5-10 and 5-100 μM with detection limits of 0.28 μM and 4.0 μM, respectively. The introduced dual sensor was used for pharmaceutical, environmental and biological analysis of isoniazid with satisfactory results. The paper based colorimetric sensor can be applied for isoniazid portable monitoring by smartphone as a detector and even nocked eyes.
Collapse
Affiliation(s)
- Neda Azizi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Samadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Zhao Q, Shen T, Liu Y, Hu X, Zhao W, Ma Z, Li P, Zhu X, Zhang Y, Liu M, Yao S. Universal Nanoplatform for Formaldehyde Detection Based on the Oxidase-Mimicking Activity of MnO 2 Nanosheets and the In Situ Catalysis-Produced Fluorescence Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7303-7312. [PMID: 34160203 DOI: 10.1021/acs.jafc.1c01174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO) pollution is a scientific problem of general concern and has aroused wide attention. In this work, a fluorometric method for sensitive detection of formaldehyde was developed based on the oxidase-mimicking activity of MnO2 nanosheets in the presence of o-phenylenediamine (OPD). The MnO2 nanosheets were prepared by the bottom-up approach using manganese salt as the precursor, followed by the exfoliation with bovine serum albumin. The as-prepared MnO2 nanosheets displayed excellent oxidase-mimicking activity, and can be used as the nanoplatform for sensing in fluorometric analysis. OPD was used as a typical substrate because MnO2 nanosheets can catalyze the oxidation of OPD to generate yellow 2,3-diaminophenazine (DAP), which can emit bright yellow fluorescence at the wavelength of 560 nm. While in the presence of formaldehyde, the fluorescence was greatly quenched because formaldehyde can react with OPD to form Schiff bases that decreased the oxidation reaction of OPD to DAP. The main mechanism and the selectivity of the platform were studied. As a result, formaldehyde can be sensitively detected in a wide linear range of 0.8-100 μM with the detection limit as low as 6.2 × 10-8 M. The platform can be used for the detection of formaldehyde in air, beer, and various food samples with good performance. This work not only expands the application of MnO2 nanosheets in fluorescence sensing, but also provides a sensitive and selective method for the detection of formaldehyde in various samples via a new mechanism.
Collapse
Affiliation(s)
- Qixia Zhao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Tong Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yujiao Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaojun Hu
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha 410111, PR China
| | - Wenying Zhao
- Hunan Kaimei New Material Technology Co., Ltd, Yueyang 414600, PR China
| | - Zhangyan Ma
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|