1
|
Li K, Liu T, Ying J, Tian A, Wang X. A lantern-shaped fluorescent probe based on viologen/polyoxometalate for the detection of Ag + in beverages and daily necessities. Talanta 2024; 280:126786. [PMID: 39216417 DOI: 10.1016/j.talanta.2024.126786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A lantern-shaped viologen/polyoxometalate (POM)-based compound [NiII(MSBP)2(H2O)2]·(β-Mo8O26)·H2O (Ni-POM) (MSBP = 1-(4-Methanesulfonyl-benzyl)-[4,4']bipyridinyl-1-ium) was successfully synthesized by a hydrothermal method for the efficient detection of Ag+. A strong affinity between Ag+ and SO in the viologen component of the Ni-POM structure made them interact, which led to blue fluorescence quenching. In the concentration range of 0.1-4 μM, a strong linear relationship was observed between the Ag+concentration and the fluorescence intensity ratio of Ni-POM, and the limit of detection (LOD) was 20.4 nM. Considering the widespread presence of Ag+ in various water sources, daily necessities and food preservatives, the utilization of Ni-POM for detecting the concentration of Ag+ in real samples (water, daily necessities and beverages) was proved to be highly effective. Moreover, a remarkable recovery rate ranging from 95.70 % to 103.60 % was achieved, indicating that the monitoring results of practical samples were satisfactory. A fluorescent ink based on Ni-POM was designed for the purpose of information confidentiality. More importantly, the hydrogel intelligent device for visual detection of Ag+ was developed, which could realize visual real-time on-site quantitative detection of Ag+ concentration in beverages and daily necessities. Therefore, Ni-POM provides an effective platform for the development of visually quantitative detection of Ag+ in food and daily necessities.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
2
|
Wang Q, He X, Mao J, Wang J, Wang L, Zhang Z, Li Y, Huang F, Zhao B, Chen G, He H. Carbon Dots: A Versatile Platform for Cu 2+ Detection, Anti-Counterfeiting, and Bioimaging. Molecules 2024; 29:4211. [PMID: 39275059 PMCID: PMC11397538 DOI: 10.3390/molecules29174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Carbon dots (CDs) have garnered extensive interest in basic physical chemistry as well as in biomedical applications due to their low cost, good biocompatibility, and great aqueous solubility. However, the synthesis of multi-functional carbon dots has always been a challenge for researchers. Here, we synthesized novel CDs with a high quantum yield of 28.2% through the straightforward hydrothermal method using Diaminomaleonitrile and Boc-D-2, 3-diaminopropionic acid. The size, chemical functional group, and photophysical properties of the CDs were characterized by TEM, FTIR, XPS, UV, and fluorescence. It was demonstrated in this study that the prepared CDs have a high quantum yield, excellent photostability, and low cytotoxicity. Regarding the highly water-soluble property of CDs, they were proven to possess selective and sensitive behavior against Cu2+ ions (linear range = 0-9 μM and limit of detection = 1.34 μM). Moreover, the CDs were utilized in fluorescent ink in anti-counterfeiting measures. Because of their low cytotoxicity and good biocompatibility, the CDs were also successfully utilized in cell imaging. Therefore, the as-prepared CDs have great potential in fluorescence sensing, anti-counterfeiting, and bioimaging.
Collapse
Affiliation(s)
- Qian Wang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Xinyi He
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Junxia Wang
- PetroChina Changqing Petrochemical Company, Xi'an 710032, China
| | - Liangliang Wang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhongchi Zhang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Yongfei Li
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Fenglin Huang
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an Shiyou University, Xi'an 710065, China
| | - Bin Zhao
- Department of Statistics, North Dakota State University, Fargo, North Dakota, ND 58102, USA
| | - Gang Chen
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an 710065, China
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Guan Y, Lu Y, Wei Y. Fabrication of a ratiometric fluorescent probe based on Tb 3+ doped dual-emitting carbon dots for the detection of cytochrome c. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124310. [PMID: 38663132 DOI: 10.1016/j.saa.2024.124310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024]
Abstract
Cytochrome c (Cyt-c) was commonly an intrinsic biomarker for a variety of cellular characteristics, such as respiration, energy levels, and apoptosis. Herein, a simple fluorescence sensor was constructed for the detection of Cyt-c in buffer and real serum samples. The carbon dots doped with Tb3+ on the premise of 1-(2-pyridylazo)-2-naphthol (PAN) were fabricated and used as a dual-emission ratiometric fluorescent probe for detecting Cyt-c based on the internal filtering effect (IFE). As a fluorescent probe for ultra-sensitive detection, Cyt-c was quantitatively detected at different concentrations from 1 to 1000 nM. The fluorescent detection method for Cyt-c showed a good linear relationship from 1 to 50 nM, and the limit of detection (LOD) was 0.35 nM. In the recovery range of 101.27-103.39 % in human serum samples, the relative standard deviation (RSD) was less than 3.27 % (n = 3). In the end, the possible structures of CDs were predicted by DFT theoretical simulation calculations. All the results proved the ability of carbon dots as fluorescent probes to detect biomarkers and the application prospects in bioanalysis.
Collapse
Affiliation(s)
- Yuwei Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yanhong Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Zhu J, Shen M, Shen J, Wang C, Wei Y. Nitrogen and bromine co-doped carbon dots with red fluorescence for sensing of Ag + and visual monitoring of glutathione in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122642. [PMID: 36989694 DOI: 10.1016/j.saa.2023.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Carbon dots (CDs) with red fluorescence emission have excellent advantages in cell imaging. Herein, novel nitrogen and bromine doped CDs (N,Br-CDs) were prepared with 4-bromo-1,2-phenylenediamine as precursor. The N, Br-CDs present the optimal emission wavelength at 582 nm (λex = 510 nm) at pH 7.0 and 648 nm (λex = 580 nm) at pH 3.0 ∼ 5.0, respectively. The fluorescence intensity of N,Br-CDs at 648 nm versus Ag+ concentration shows a good relationship from 0 to 60 μM with the limit of detection (LOD) of 0.14 μM. Furthermore, the fluorescence of N,Br-CDs/Ag+ is efficiently restored via the combination of glutathione (GSH) and Ag+ and linearly changes with GSH concentration from 0 ∼ 6.0 μM with LOD of 49 nM. This method has been successfully employed to monitor intracellular Ag+ and GSH with fluorescence imaging. The results suggest that the N,Br-CDs has application potential in the sensing of Ag+ and visual monitoring of GSH in cells.
Collapse
Affiliation(s)
- Jiantao Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China; Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, Gansu, PR China
| | - Mengxin Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
5
|
Mohandoss S, Ahmad N, Khan MR, Velu KS, Palanisamy S, You S, Kumar AJ, Lee YR. Nitrogen and sulfur co-doped photoluminescent carbon dots for highly selective and sensitive detection of Ag + and Hg 2+ ions in aqueous media: Applications in bioimaging and real sample analysis. ENVIRONMENTAL RESEARCH 2023; 228:115898. [PMID: 37054837 DOI: 10.1016/j.envres.2023.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
In this study, we report the synthesis of photoluminescent (PL) nitrogen (N) and sulfur (S) co-doped carbon dots (NS-CDs) from nitazoxanide and 3-mercaptopropionic acid as a precursors via a one-pot hydrothermal methods. N and S co-doped materials allows more active sites in the CDs surface resulting in an enhancement of their PL properties. NS-CDs show bright blue PL, excellent optical properties, good water solubility, and a high quantum yield (QY) of 32.1%. The as-prepared NS-CDs were confirmed by UV-Visible, photoluminescence, FTIR, XRD and TEM analysis. An optimized excitation at 345 nm, the NS-CDs exhibited strong PL emission at 423 nm with an average size of 3.53 ± 0.25 nm. Under optimized conditions, the NS-CDs PL probe shows high selectivity with Ag+/Hg2+ ions detected, while other cations no significant changes the PL signal. The PL intensity of NS-CDs linearly quenching and enhancement with Ag+ and Hg2+ ions from 0 to 50 × 10-6 M, with the detection limit of 2.15 × 10-6 M and 6.77 × 10-7 M (S/N = 3). More interestingly, as-synthesized NS-CDs shows a strong binding to Ag+/Hg2+ ions with the PL quenching and enhancement to precise and quantitative detection of Ag+/Hg2+ ions in living cells. The proposed system was effectively utilized for the sensing of Ag+/Hg2+ ions in real samples resulting in high sensitivity and good recoveries (98.4-109.7%).
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Kuppu Sakthi Velu
- SSN, Research Centre, SSN College of Engineering, Anna University, Tamilnadu, India
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | | | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
6
|
Carbon Dots-Based Fluorescence Assay for the Facile and Reliable Detection of Ag + in Natural Water and Serum Samples. Molecules 2023; 28:molecules28041566. [PMID: 36838554 PMCID: PMC9963176 DOI: 10.3390/molecules28041566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In this report, red-emissive carbon dots (C-dots) were facilely prepared from o-phenylenediamine via microwave-assisted hydrothermal treatment. The C-dots demonstrated excitation wavelength-independent emission with maximums at 621 nm that could be effectively quenched by Ag+ via static quenching. This phenomenon was exploited to establish a sensitive fluorescence assay with a low detection limit (0.37 μM) and wide linear range (0-50 μM). In addition, this assay demonstrated excellent selectivity toward Ag+, free from the interference of 16 commonly seen metal ions. Most importantly, the assay demonstrated high reliability toward samples in deionized water, mineral water, lake water, and serum, which could indicate potential applications for Ag+ monitoring in complicated natural and biological environments.
Collapse
|
7
|
Zhou Y, Chen J, Kirbas Cilingir E, Zhang W, Gonzalez L, Perez S, Davila A, Brejcha N, Gu J, Shi W, Domena JB, Ferreira BCLB, Zhang F, Vallejo FA, Toledo D, Liyanage PY, Graham RM, Dallman J, Peng Z, Agatemor C, Catenazzi A, Leblanc RM. An insight into embryogenesis interruption by carbon nitride dots: can they be nucleobase analogs? NANOSCALE 2022; 14:17607-17624. [PMID: 36412202 DOI: 10.1039/d2nr04778k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The carbon nitride dot (CND) is an emerging carbon-based nanomaterial. It possesses rich surface functional moieties and a carbon nitride core. Spectroscopic data have demonstrated the analogy between CNDs and cytosine/uracil. Recently, it was found that CNDs could interrupt the normal embryogenesis of zebrafish. Modifying CNDs with various nucleobases, especially cytosine, further decreased embryo viability and increased deformities. Physicochemical property characterization demonstrated that adenine- and cytosine-incorporated CNDs are similar but different from guanine-, thymine- and uracil-incorporated CNDs in many properties, morphology, and structure. To investigate the embryogenesis interruption at the cellular level, bare and different nucleobase-incorporated CNDs were applied to normal and cancerous cell lines. A dose-dependent decline was observed in the viability of normal and cancerous cells incubated with cytosine-incorporated CNDs, which matched results from the zebrafish embryogenesis experiment. In addition, nucleobase-incorporated CNDs were observed to enter cell nuclei, demonstrating a possibility of CND-DNA interactions. CNDs modified by complementary nucleobases could bind each other via hydrogen bonds, which suggests nucleobase-incorporated CNDs can potentially bind the complementary nucleobases in a DNA double helix. Nonetheless, neither bare nor nucleobase-incorporated CNDs were observed to intervene in the amplification of the zebrafish polymerase-alpha 1 gene in quantitative polymerase chain reactions. Thus, in conclusion, the embryogenesis interruption by bare and nucleobase-incorporated CNDs might not be a consequence of CND-DNA interactions during DNA replication. Instead, CND-Ca2+ interactions offer a plausible mechanism that hindered cell proliferation and zebrafish embryogenesis originating from disturbed Ca2+ homeostasis by CNDs. Eventually, the hypothesis that raw or nucleobase-incorporated CNDs can be nucleobase analogs proved to be invalid.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
- C-Dots, LLC, Miami, FL 33136, USA
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Samuel Perez
- Miami Dade College North Campus, Miami, FL 33167, USA
| | - Arjuna Davila
- Miami Dade College North Campus, Miami, FL 33167, USA
| | | | - Jun Gu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Wenquan Shi
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Frederic A Vallejo
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniela Toledo
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Regina M Graham
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Julia Dallman
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
8
|
Li Z, Zhou Q, Li S, Liu M, Li Y, Chen C. Carbon dots fabricated by solid-phase carbonization using p-toluidine and l-cysteine for sensitive detection of copper. CHEMOSPHERE 2022; 308:136298. [PMID: 36064008 DOI: 10.1016/j.chemosphere.2022.136298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 μM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
9
|
Chai Y, Feng Y, Zhang K, Li J. Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery-A Review. Pharmaceutics 2022; 14:pharmaceutics14112482. [PMID: 36432673 PMCID: PMC9697445 DOI: 10.3390/pharmaceutics14112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Carbon dots (CDs), a new member of carbon nanostructures, rely on surface modification and functionalization for their good fluorescence phosphorescence and excellent physical and chemical properties, including small size (<10 nm), high chemical stability, biocompatibility, non-toxicity, low cost, and easy synthesis. In the field of medical research on cancer (IARC), CDs, a new material with unique optical properties as a photosensitizer, are being applied to heating local apoptosis induction of cancer cells. In addition, imaging tools can also be combined with a drug to form the nanometer complex compound, the imaging guidance for multi-function dosage, so as to improve the efficiency of drug delivery, which also plays a big role in genetic diagnosis. This paper mainly includes three parts: The first part briefly introduces the synthesis and preparation of carbon dots, and summarizes the advantages and disadvantages of different preparation methods; The second part introduces the preparation methods of carbon dot composites. Finally, the application status of carbon dot composites in biomedicine, cancer theranostics, drug delivery, electrochemistry, and photocatalysis is summarized.
Collapse
Affiliation(s)
- Yaru Chai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Yashan Feng
- Advanced Functional Materials Laboratory, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| |
Collapse
|
10
|
Sharma A, Hosseini-Bandegharaei A, Kumar N, Kumar S, Kumari K. Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Dong LY, Cao TY, Guo YH, Chen R, Zhao YS, Zhao Y, Kong H, Qu HH. Aristolochic Acid Nephropathy: A Novel Suppression Strategy of Carbon Dots Derived from Astragali Radix Carbonisata. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite strict restrictions on the use of aristolochic acids (AAs)-containing merchandise or drugs in many countries, a substantial amounts of occurrences aristolochic acid nephropathy (AAN) had been accounted worldwide. Clinically, there is no effective incurable therapy regimen to
reverse the progression of AAN. Although carbon dots have shown surprising bioactivity, research on the acute kidney injury caused by AAs is lacking. Here, a novel biomass-carbon dots from Astragali Radix (AR) as precursors was synthesized through one-step pyrolysis treatment. The ARC-carbon
dots (ARC-CDs) was demonstrated in detail for its inhibitory effect on aristolochic acid nephropathy in a mice model. The indexes of inflammatory cytokines as well as oxidative stress were significantly reduced by the ARC-CDs in kidney tissue cells. Additionally, the ARC-CDs administration
resulted in a large decrease in positive apoptotic cells according to TUNEL labeling and western blotting, which may be connected to the ARC-CDs’ modulation of the protein in the Akt/Mdm2/p53 signaling pathway. These findings show that ARC-CDs have remarkable anti-inflammatory, antioxidant,
and anti-apoptotic capabilities against acute kidney injury spurred by aristolochic acids via the AKT/Mdm2/p53 signaling pathway.
Collapse
Affiliation(s)
- Li-Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tian-You Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying-Hui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Rui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yu-Sheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui-Hua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
12
|
Zheng L, Yan Y, Wang N, Li M, Shuang S, Bian W, Choi MMF. Sulfur-doped graphitic carbon nitride nanosheets as a sensitive fluorescent probe for detecting environmental and intracellular Ag. Methods Appl Fluoresc 2022; 10. [PMID: 35850115 DOI: 10.1088/2050-6120/ac8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Silver is widely used in medical materials, photography, electronics and other industries as a precious metal. The large-scale industrial production of silver-containing products and liquid waste emissions aggravate the environmental pollution. Silver ion is one of the most toxic metal ions, causing pollution to the environment and damage to public health. Therefore, the efficient and sensitive detection of Ag+ in the water environment is extremely important. Sulfur-doped carbon nitride nanosheets (SCN Ns) were prepared by melamine and thiourea via high-temperature calcination. The morphology, chemical composition and surface functional groups of the SCN Ns were characterized by SEM, TEM, XRD, XPS, and FT-IR. The fluorescence of SCN Ns was gradually quenched as the Ag+ concentration increased. The detection limit for Ag+ was as low as 0.28 nM. The quenching mechanism mainly is attributed to static quenching. In this paper, SCN Ns were used as the fluorescent probe for detecting Ag+. SCN Ns have successfully detected Ag+ in different environmental aqueous samples and cells. Finally, SCN Ns were further applied to the visual quantitative detection of intracellular Ag+.
Collapse
Affiliation(s)
- Lingling Zheng
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, Shanxi , 030001, CHINA
| | - Yangyang Yan
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, Shanxi , 030001, CHINA
| | - Ning Wang
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, Shanxi , 030001, CHINA
| | - Mingli Li
- Lvliang People's Hospital, Lvliang People's Hospital, Lvliang, China, Lvliang, 033000, CHINA
| | - Shaomin Shuang
- Shanxi University, Xiaodian District, Taiyuan City, Shanxi Province, Taiyuan, Shanxi , 030006, CHINA
| | - Wei Bian
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, 030001, CHINA
| | - Martin M F Choi
- c/o Tyndale Baptist Church, Bristol Chinese Christian Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, United Kingdom, Clifton, Bristol, BS8 2QG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
13
|
Fu WJ, Peng ZX, Dai Y, Yang YF, Song JY, Sun W, Ding B, Gu HW, Yin XL. Highly fluorescent N doped C-dots as sensor for selective detection of Hg 2+ in beverages. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120392. [PMID: 34547686 DOI: 10.1016/j.saa.2021.120392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, nitrogen doped carbon dots (NCDs) were synthesized through one step hydrothermal reaction using citric acid and ethylenediamine as precursors. The prepared NCDs exhibit high quantum yield of 67.4%, good stability, excellent selectivity and sensitivity. It was found that the NCDs have potential as a fluorescence sensor for the detection of Hg2+. Under optimal conditions, good linearity between the change in NCDs fluorescence intensity and Hg2+ concentration was obtained in the range of 0.3 to 2.0 μM with a detection limit at 0.24 μM. The possible detection mechanism was static quenching of NCDs by Hg2+. The established method was successfully applied to the determination of Hg2+ in beverage samples. The results indicated that the NCDs-based sensor has potential for detection of Hg2+ in real beverage sample.
Collapse
Affiliation(s)
- Wen-Jing Fu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Zhi-Xin Peng
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Ying Dai
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yu-Fan Yang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Jia-Yu Song
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Weiqing Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China.
| | - Xiao-Li Yin
- College of Life Sciences, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
14
|
Zhu XY, Yang XN, Luo Y, Redshaw C, Liu M, Tao Z, Xiao X. Construction of a Supramolecular Fluorescence Sensor from Water‐soluble Pillar[5]arene and 1‐Naphthol for Recognition of Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Carl Redshaw
- Department of Chemistry University of Hull Cottingham Rd Hull HU6 7RX, U.K
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| |
Collapse
|
15
|
Nanosensors Based on Structural Memory Carbon Nanodots for Ag + Fluorescence Determination. NANOMATERIALS 2021; 11:nano11102687. [PMID: 34685130 PMCID: PMC8537853 DOI: 10.3390/nano11102687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Ag+ pollution is of great harm to the human body and environmental biology. Therefore, there is an urgent need to develop inexpensive and accurate detection methods. Herein, lignin-derived structural memory carbon nanodots (CSM-dots) with outstanding fluorescence properties were fabricated via a green method. The mild preparation process allowed the CSM-dots to remain plentiful phenol, hydroxyl, and methoxy groups, which have a specific interaction with Ag+ through the reduction of silver ions. Further, the sulfur atoms doped on CSM-dots provided more active sites on their surface and the strong interaction with Ag nanoparticles. The CSM-dots can specifically bind Ag+, accompanied by a remarkable fluorescence quenching response. This “turn-off” fluorescence behavior was used for Ag+ determination in a linear range of 5–290 μM with the detection limit as low as 500 nM. Furthermore, findings showed that this sensing nano-platform was successfully used for Ag+ determination in real samples and intracellular imaging, showing great potential in biological and environmental monitoring applications.
Collapse
|
16
|
Qin J, Gao X, Chen Q, Liu H, Liu S, Hou J, Sun T. pH sensing and bioimaging using green synthesized carbon dots from black fungus. RSC Adv 2021; 11:31791-31794. [PMID: 35496837 PMCID: PMC9041562 DOI: 10.1039/d1ra05199g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Biomass is regarded as an excellent candidate for the preparation of carbon nanomaterials. A pH sensor was established based on carbon dots synthesized from black fungus, and possesses good fluorescence response and reversibility for pH detection. Meanwhile, the CDs can also be applied to intra-cellular bioimaging, showing potential for bioimaging. Carbon dots derived from black fungus were prepared and applied as a pH sensor for real water samples.![]()
Collapse
Affiliation(s)
- Jing Qin
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Xu Gao
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Qinqin Chen
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Huiling Liu
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Shuqi Liu
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Juan Hou
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Tiedong Sun
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| |
Collapse
|
17
|
Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Fluorescent Nanoparticles Synthesized from DNA, RNA, and Nucleotides. NANOMATERIALS 2021; 11:nano11092265. [PMID: 34578581 PMCID: PMC8471148 DOI: 10.3390/nano11092265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Ubiquitous on Earth, DNA and other nucleic acids are being increasingly considered as promising biomass resources. Due to their unique chemical structure, which is different from that of more common carbohydrate biomass polymers, materials based on nucleic acids may exhibit new, attractive characteristics. In this study, fluorescent nanoparticles (biodots) were prepared by a hydrothermal (HT) method from various nucleic acids (DNA, RNA, nucleotides, and nucleosides) to establish the relationship between the structure of precursors and fluorescent properties of biodots and to optimize conditions for preparation of the most fluorescent product. HT treatment of nucleic acids results in decomposition of sugar moieties and depurination/depyrimidation of nucleobases, while their consequent condensation and polymerization gives fluorescent nanoparticles. Fluorescent properties of DNA and RNA biodots are drastically different from biodots synthesized from individual nucleotides. In particular, biodots synthesized from purine-containing nucleotides or nucleosides show up to 50-fold higher fluorescence compared to analogous pyrimidine-derived biodots. The polymeric nature of a precursor disfavors formation of a bright fluorescent product. The reported effect of the structure of the nucleic acid precursor on the fluorescence properties of biodots should help designing and synthesizing brighter fluorescent nanomaterials with broader specification for bioimaging, sensing, and other applications.
Collapse
Affiliation(s)
- Maofei Wang
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Masaki Tsukamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Vladimir G. Sergeyev
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
- Correspondence: ; Tel.: +81-52-789-4771
| |
Collapse
|