1
|
Burratti L, Sgreccia E, Bertelà F, Galiano F. Metal nanostructures in polymeric matrices for optical detection and removal of heavy metal ions, pesticides and dyes from water. CHEMOSPHERE 2024; 362:142636. [PMID: 38885767 DOI: 10.1016/j.chemosphere.2024.142636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Water pollutants such as heavy metal ions, pesticides, and dyes pose a worldwide issue. Their presence in water resources interferes with the normal growth mechanisms of living beings and causes long or short-term diseases. For this reason, research continuously tends to develop innovative, selective, and efficient processes or technologies to detect and remove pollutants from water. This review provides an up-to-date overview on metal nanoparticles loaded in polymeric matrices, such as hydrogels and membranes, and employed as optical sensors and as removing materials for water pollutants. The synthetic pathways of nanomaterials loading into polymeric matrices have been analyzed, particularly focusing on noble metal nanoparticles, noble metal nanoclusters, and metal oxide nanoparticles. Moreover, the sensing properties of modified matrices towards water pollutants have been discussed in addition to the interaction mechanisms between the sensors and the toxic compounds. The last part of the review has been devoted to illustrating the separation mechanism and removal performance of membranes loaded with nanomaterials in the treatment and purification of water streams from different contaminants (heavy metals, dyes and pesticides).
Collapse
Affiliation(s)
- Luca Burratti
- Faculty of Science, Technology and Innovation of the University "Mercatorum", Piazza Mattei 10, 00186, Rome (RM), Italy
| | - Emanuela Sgreccia
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome (RM), Italy
| | - Federica Bertelà
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146, Rome (RM), Italy
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
2
|
Tewari S, Sahani S, Yaduvanshi N, Painuli R, Sankararamakrishnan N, Dwivedi J, Sharma S, Han SS. Green synthesized AgNPs as a probe for colorimetric detection of Hg (II) ions in aqueous medium and fluorescent imaging in liver cell lines and its antibacterial activity. DISCOVER NANO 2024; 19:78. [PMID: 38696067 PMCID: PMC11065856 DOI: 10.1186/s11671-024-04014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
The present research aimed at green synthesis of Ag nanoparticles (AgNPs) based colorimetric sensor using persimmon leaf extract (PLE) for selective detection of mercuric ion (Hg2+). Optimization of reaction conditions viz. pH, concentration of PLE, time was done and further AgNPs were characterized using UV, IR, FE-SEM, EDX, XRD and TEM analysis. The developed AgNPs were evaluated for the selective colorimetric detection of Hg2+ in aqueous medium and fluorescence imaging of Hg2+ ions in liver cell lines. Later, the antibacterial activity of AgNPs was performed against S. aureus and E. coli. The findings of the study revealed that PLE mediated AgNPs exhibited notable limit of detection up to 0.1 ppb, high efficiency, and stability. The antibacterial study indicated that developed AgNPs has impressive bacterial inhibiting properties against the tested bacterial strains. In conclusion, developed biogenic AgNPs has high selectivity and notable sensitivity towards Hg2+ ions and may be used as key tool water remediation.
Collapse
Affiliation(s)
- Sanjana Tewari
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Shalini Sahani
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Neetu Yaduvanshi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Ritu Painuli
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Nalini Sankararamakrishnan
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
3
|
Zhang Y, Tang Y, Liao Q, Qian Y, Zhu L, Yu DG, Xu Y, Lu X, Kim I, Song W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J Mater Chem B 2024; 12:2054-2069. [PMID: 38305698 DOI: 10.1039/d3tb02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Microporous organic polymers (MOPs) and metal oxide hybrid composites are considered valuable coating materials because of their versatility derived from the synergistic combination of MOPs' inherent dispersibility and the distinctive properties of metal oxides. In this study, we present the synthesis of sea-urchin-like MOPs hybridised with silver oxide nanoparticles (Ag2O NPs) to fabricate antibacterial composites suitable for potential antibacterial coating applications. Ag2O NP-decorated urchin-like MOPs (Ag2O@UMOPs) were synthesised by employing a combination of two methods: a one-pot Lewis acid-base interaction-mediated self-assembly and a straightforward impregnation process. The as-prepared Ag2O@UMOPs demonstrated high antibacterial efficacy against both E. coli (G-) and S. aureus (G+). The antibacterial mechanism of Ag2O@UMOPs mainly involved the synergistic effects of accumulation of Ag2O@UMOPs, the release of Ag+ ions, and the generation of reactive oxygen species. The exceptional processability and biosafety of Ag2O@UMOPs make them ideal organic coating materials for convenient application on various substrates. These remarkable features of Ag2O@UMOPs provide an effective platform for potential antibacterial applications in biological sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Qian Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Linglin Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, No. 139 Yan An Xi Road, Shanghai, 200040, P. R. China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
4
|
Lulek E, Soleymani J, Molaparast M, Ertas YN. Electrochemical sensing of doxorubicin hydrochloride under sodium alginate antifouling conditions using silver nanoparticles modified glassy carbon electrodes. Talanta 2023; 265:124846. [PMID: 37379752 DOI: 10.1016/j.talanta.2023.124846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Doxorubicin (DOX) is a highly effective anticancer drug with a narrow therapeutic window; thus, sensitive and timely detection of DOX is crucial. Using electrodeposition of silver nanoparticles (AgNPs) and electropolymerization of alginate (Alg) layers on the surface of a glassy carbon electrode, a novel electrochemical probe was constructed (GCE). The fabricated AgNPs/poly-Alg-modified GCE probe was utilized for the quantification of DOX in unprocessed human plasma samples. For the electrodeposition of AgNPs and electropolymerization of alginate (Alg) layers on the surface of GCE, cyclic voltammetry (CV) was used in the potential ranges of -2.0 to 2.0 V and -0.6 to 0.2 V, respectively. The electrochemical activity of DOX exhibited two oxidation processes at the optimum pH value of 5.5 on the surface of the modified GCE. The DPV spectra of poly(Alg)/AgNPs modified GCE probe toward consecutive concentrations of DOX in plasma samples demonstrated wide dynamic ranges of 15 ng/mL-0.1 μg/mL and 0.1-5.0 μg/mL, with a low limit of quantification (LLOQ) of 15 ng/mL. The validation results indicated that the fabricated electrochemical probe might serve as a highly sensitive and selective assay for the quantification of DOX in patient samples. As an outstanding feature, the developed probe could detect DOX in unprocessed plasma samples and cell lysates without the requirement for pretreatment.
Collapse
Affiliation(s)
- Elif Lulek
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Molaparast
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Yavuz Nuri Ertas
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Talodthaisong C, Sangiamkittikul P, Chongwichai P, Saenchoopa A, Thammawithan S, Patramanon R, Kosolwattana S, Kulchat S. Highly Selective Colorimetric Sensor of Mercury(II) Ions by Andrographolide-Stabilized Silver Nanoparticles in Water and Antibacterial Evaluation. ACS OMEGA 2023; 8:41134-41144. [PMID: 37970038 PMCID: PMC10633854 DOI: 10.1021/acsomega.3c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Silver nanoparticles (AgNPs) are well known for their exceptional properties and versatility in various applications. This study used andrographolide as a biochemical stabilizer to synthesize AgNPs (andro-AgNPs). The andro-AgNPs were characterized by using UV-vis spectroscopy, revealing a surface plasmon resonance peak at 440 nm. Fourier transform infrared spectroscopy was also used to confirm the presence of AgNPs. Transmission electron microscopy was used to investigate the morphology of andro-AgNPs, which showed a spherical shape with an average diameter of 18.30 ± 5.57 nm (n = 205). Andro-AgNPs were utilized as a colorimetric sensor to detect mercury ions (Hg2+) in water, and the optimized detection conditions were evaluated using UV-vis spectroscopy with a linear range of 15-120 μM. The limit of detection and the limit of quantification for Hg2+ detection were found to be 11.15 and 37.15 μM, respectively. Furthermore, andro-AgNPs exhibited antibacterial properties against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The results imply that andro-AgNPs hold promising potential for future biomedical applications.
Collapse
Affiliation(s)
- Chanon Talodthaisong
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Panupong Chongwichai
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Apichart Saenchoopa
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saengrawee Thammawithan
- Department
of Biochemistry, Faculty of Science, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Department
of Biochemistry, Faculty of Science, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Suppanat Kosolwattana
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Bezuneh TT, Ofgea NM, Tessema SS, Bushira FA. Tannic Acid-Functionalized Silver Nanoparticles as Colorimetric Probe for the Simultaneous and Sensitive Detection of Aluminum(III) and Fluoride Ions. ACS OMEGA 2023; 8:37293-37301. [PMID: 37841115 PMCID: PMC10568998 DOI: 10.1021/acsomega.3c05092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
In this study, we employed tannic acid (TA)-functionalized silver nanoparticles (TA@AgNPs) as colorimetric probe for the simultaneous and sensitive detection of Al(III) and F- ions. The proposed sensor was based on the aggregation and anti-aggregation effects of target Al(III) and F- ions on TA@AgNPs, respectively. Because of the strong coordination bond between Al(III) ions and TA, the addition of Al(III) ions to TA@AgNPs could cause aggregation and, hence, result in a significant change in the absorption and color of the test solution. Interestingly, in the presence of F- ions, the aggregation effect of Al(III) ions on TA@AgNPs can be effectively prevented. The extent of aggregation and anti-aggregation effects was concentration-dependent and can be used for the quantitative detection of Al(III) and F- ions. The as-proposed sensor presented the sensitive detection of Al(III) and F ions with limits of detection (LOD) of 0.2 and 0.19 μM, respectively. In addition, the proposed sensor showed excellent applicability for the detection of Al(III) and F- ions in real water samples. Moreover, the sensing strategy offered a simple, rapid, and sensitive detection procedure and could be used as a potential alternative to conventional methods, which usually involve sophisticated instruments, complicated processes, and a long detection time.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- Department
of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21 Arbaminch, Ethiopia
| | - Natinael Mekonnen Ofgea
- Department
of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21 Arbaminch, Ethiopia
| | - Solomon Simie Tessema
- Department
of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245 Fiche, Ethiopia
| | - Fuad Abduro Bushira
- Department
of Chemistry, College of Natural Sciences, Jima University, P.O. Box 378 Jima, Ethiopia
| |
Collapse
|
7
|
Yin P, Zou T, Yao G, Li S, He Y, Li G, Li D, Tan W, Yang M. In situ microwave-assisted preparation of NS-codoped carbon dots stabilized silver nanoparticles as an off-on fluorescent probe for trace Hg 2+ detection. CHEMOSPHERE 2023; 338:139451. [PMID: 37451632 DOI: 10.1016/j.chemosphere.2023.139451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
An off-on fluorescent probe (NS-CDs-AgNPs) was synthesized based on a one-pot microwave process by utilizing N, S co-doping carbon dots (NS-CDs) and silver nitrate as precursors. The significant peak of NS-CDs-AgNPs at 393 nm in ultraviolet spectrum indicated silver nanoparticle (AgNPs) were successfully synthesized. A faint blue fluorescence emission (442 nm) was displayed when excited NS-CDs-AgNPs at 371 nm. A remarkable fluorescence recovery was observed upon adding of trance Hg2+, whereas the other heavy metal ions did not elicit this response. The reason for this phenomenon was revealed in this work that a spontaneous redox reaction occurred between NS-CDs-AgNPs and Hg2+, which leaded to the formation of NS-CDs-Agn-2NPsHg complexes. On the basis of this mechanism, a new off-on fluorescent analytical method was constructed for Hg2+ detection with linear range of 10-400 nM (R2 = 0.9941), and the detection limit (LOD) of 5.16 nM. Additionally, satisfactory recovery (90.28%-106.13%) and the relative standard deviation (RSD) (RSD<5.21%) were obtained in water sample detection. More importantly, the NS-CDs-AgNPs exhibited lower cytotoxicity and better biocompatibility, indicating a huge potential in cell imaging and clinical medicine.
Collapse
Affiliation(s)
- Pengyuan Yin
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Tianru Zou
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guixiang Yao
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shaoqing Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yanzhi He
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guizhen Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Da Li
- School of Mechanical and Electrical Engineering, Qingdao University, PR China.
| | - Wei Tan
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Key Laboratory of Resource Clean Conversion in Ethnic Regions of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Min Yang
- School of Mechanical and Electrical Engineering, Qingdao University, PR China.
| |
Collapse
|
8
|
Shahbazi-Derakhshi P, Abbasi M, Akbarzadeh A, Mokhtarzadeh A, Hosseinpour H, Soleymani J. A ratiometric electrochemical probe for the quantification of apixaban in unprocessed plasma samples using carbon aerogel/BFO modified glassy carbon electrodes. RSC Adv 2023; 13:21432-21440. [PMID: 37465572 PMCID: PMC10351564 DOI: 10.1039/d3ra03293k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
A novel electrochemical probe was established for the quantification of apixaban (APX) in unprocessed plasma samples. Efficiently oxidized graphene oxide aerogels (EEGO-AGs) and nano-sized Bi2Fe4O9 (BFO) particles were electrodeposited on the surface of a glassy carbon electrode (GCE). In this work, a ratiometric electrochemical method was introduced for APX detection to enhance the specificity of the probe in plasma samples. The fabricated ratiometric probe was employed for the indirect detection determination of APX using K3[Fe(CN)6]/K4[Fe(CN)6] as the redox pair. The differential pulse voltammetry technique was used to record the current alteration of the BFO/EEGO-AG-functionalized GCE probe at various APX concentrations. The probe response was proportional to the APX concentrations from 10 ng mL-1 to 10 μg mL-1 with a low limit of quantification (LLOQ) of 10 ng mL-1. After validation, this method was successfully utilized for the determination of APX in patients' plasma samples who have taken APX regularly. The fabricated chemosensor detected APX concentrations in unprocessed plasma samples with high selectivity, resulting from the physical filtering antifouling activity of aerogels.
Collapse
Affiliation(s)
- Payam Shahbazi-Derakhshi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 413 337 9323
- Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Abbasi
- Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Hosseinpour
- Department of Neurosurgery, Faculty of Medicine, Urmia University of Medical Sciences Urmia Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 413 337 9323
| |
Collapse
|
9
|
Plaeyao K, Kampangta R, Korkokklang Y, Talodthaisong C, Saenchoopa A, Thammawithan S, Latpala K, Patramanon R, Kayunkid N, Kulchat S. Gingerol extract-stabilized silver nanoparticles and their applications: colorimetric and machine learning-based sensing of Hg(ii) and antibacterial properties. RSC Adv 2023; 13:19789-19802. [PMID: 37404322 PMCID: PMC10315996 DOI: 10.1039/d3ra02702c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
This study focused on synthesizing ginger-stabilized silver nanoparticles (Gin-AgNPs) using a more eco-friendly method that utilized AgNO3 and natural ginger solution. These nanoparticles underwent a color change from yellow to colorless when exposed to Hg2+, enabling the detection of Hg2+ in tap water. The colorimetric sensor had good sensitivity, with a limit of detection (LOD) of 1.46 μM and a limit of quantitation (LOQ) of 3.04 μM. Importantly, the sensor operated accurately without being affected by various other metal ions. To enhance its performance, a machine learning approach was employed and achieved accuracy ranging from 0% to 14.66% when trained with images of Gin-AgNP solutions containing different Hg2+ concentrations. Furthermore, the Gin-AgNPs and Gin-AgNPs hydrogels exhibited antibacterial effects against both Gram-negative and Gram-positive bacteria, indicating potential future applications in the detection of Hg2+ and in wound healing.
Collapse
Affiliation(s)
- Kittiya Plaeyao
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Ratchaneekorn Kampangta
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Yuparat Korkokklang
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Apichart Saenchoopa
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Krailikhit Latpala
- Department of Mathematics, Faculty of Education, Sakon Nakhon Rajabhat University Sakon Nakhon 47000 Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Navaphun Kayunkid
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Ladkrabang Bangkok 10520 Thailand
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
10
|
Patel MR, Upadhyay MD, Ghosh S, Basu H, Singhal RK, Park TJ, Kailasa SK. Synthesis of multicolor silver nanostructures for colorimetric sensing of metal ions (Cr 3+, Hg 2+ and K +) in industrial water and urine samples with different spectral characteristics. ENVIRONMENTAL RESEARCH 2023:116318. [PMID: 37302744 DOI: 10.1016/j.envres.2023.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
In this work, we have synthesized four different color (yellow, orange, green, and blue (multicolor)) silver nanostructures (AgNSs) by chemical reduction method where silver nitrate, sodium borohydride and hydrogen peroxide were used as reagents. The as-synthesized multicolor AgNSs were successfully functionalized with bovine serum albumin (BSA) and applied as a colorimetric sensor for the assaying of metal cations (Cr3+, Hg2+, and K+). The addition of metal ions (Cr3+, Hg2+, and K+) into BSA functionalized AgNSs (BSA-AgNSs) causes the aggregation of BSA-AgNSs, and are accompanied by visual color changes with red or blue shift in the surface plasmon resonance (SPR) band of BSA-AgNSs. The BSA-AgNSs show different SPR characteristic for each metal ions (Cr3+, Hg2+, and K+) with exhibiting different spectral shift and color change. The yellow color BSA-AgNSs (Y-BSA-AgNSs) act as a probe for sensing Cr3+, orange color BSA-AgNSs (O-BSA-AgNSs) act as probe for Hg2+ ion assay, green color BSA-AgNSs (G-BSA-AgNSs) act as a probe for the assaying of both K+ and Hg2+, and blue color BSA-AgNSs (B-BSA-AgNSs) act as a sensor for colorimetric detection of K+ ion. The detection limits were found to be 0.26 μM for Cr3+ (Y-BSA-AgNSs), 0.14 μM for Hg2+ (O-BSA-AgNSs), 0.05 μM for K+ (G-BSA-AgNSs), 0.17 μM for Hg2+ (G-BSA-AgNSs), and 0.08 μM for K+ (B-BSA-AgNSs), respectively. Furthermore, multicolor BSA-AgNSs were also applied for assaying of Cr3+, and Hg2+ in industrial water samples and K+ in urine sample.
Collapse
Affiliation(s)
- Mayurkumar Revabhai Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | | | - Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hirakendu Basu
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Tae Jung Park
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
11
|
Silver/graphene oxide nanocomposite: process optimization of mercury sensing and investigation of crystal violet removal. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Dual-target electrochemical DNA sensor for detection of Pb2+ and Hg2+ simultaneously by exonuclease I–assisted recycling signal amplification. Mikrochim Acta 2022; 189:460. [DOI: 10.1007/s00604-022-05569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022]
|
13
|
Irfan MI, Amjad F, Abbas A, Rehman MFU, Kanwal F, Saeed M, Ullah S, Lu C. Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules 2022; 27:3363. [PMID: 35684301 PMCID: PMC9182355 DOI: 10.3390/molecules27113363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
The present work reports the synthesis, characterization, and antimicrobial activities of adipic acid-capped silver nanoparticles (AgNPs@AA) and their utilization for selective detection of Hg2+ ions in an aqueous solution. The AgNPs were synthesized by the reduction of Ag+ ions with NaBH4 followed by capping with adipic acid. Characterization of as-synthesized AgNPs@AA was carried out by different techniques, including UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), and zeta potential (ZP). In the UV-Vis absorption spectrum, the characteristic absorption band for AgNPs was observed at 404 nm. The hydrodynamic size of as-synthesized AgNPs was found to be 30 ± 5.0 nm. ZP values (-35.5 ± 2.4 mV) showed that NPs possessed a negative charge due to carboxylate ions and were electrostatically stabilized. The AgNPs show potential antimicrobial activity against clinically isolated pathogens. These AgNPs were found to be selectively interacting with Hg2+ in an aqueous solution at various concentrations. A calibration curve was constructed by plotting concentration as abscissa and absorbance ratio (AControl - AHg/AControl) as ordinate. The linear range and limit of detection (LOD) of Hg2+ were 0.6-1.6 μM and 0.12 μM, respectively. A rapid response time of 4 min was found for the detection of Hg2+ by the nano-probe. The effect of pH and temperature on the detection of Hg2+ was also investigated. The nano-probe was successfully applied for the detection of Hg2+ from tap and river water.
Collapse
Affiliation(s)
- Muhammad Imran Irfan
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Fareeha Amjad
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Azhar Abbas
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
- Department of Chemistry, Government Ambala Muslim Graduate College, Sargodha 40100, Pakistan
| | - Muhammad Fayyaz ur Rehman
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Sami Ullah
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| |
Collapse
|
14
|
Ji J, Wu H, Wang D, Liu D, Chen X, Feng S. Green synthesis, characterization of Radix Hedysari-mediated silver nanoparticles and their use for sensitive colorimetric detection of Pb 2+ in the Yellow River medium. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:643-651. [PMID: 35080529 DOI: 10.1039/d1ay01852c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a safe, rapid, and environment-friendly green synthesis of silver nanoparticles using the alcohol extract of Radix Hedysari (RH-AgNPs) was developed, the alcohol extract of Radix Hedysari (RH) acted as the reducing agent, stabilizer, and modifier. The main components of RH were determined using high-performance liquid chromatography (HPLC). The particle size and morphology of RH-AgNPs were optimized and characterized by a series of techniques. The size distribution, zeta potential, element distribution, and crystalline nature of RH-AgNPs were all determined. It was indicated that RH-AgNPs showed great sensitivity for lead ion (Pb2+) detection with a limit of detection (LOD) of 1.5 μM with a wide range of 10-500 μM. The selectivity was also explored for common metal ions. RH-AgNPs were then applied to the detection of Pb2+ in spiked Yellow River samples, and the possible mechanism is based on the crosslinking reaction between the hydroxide radical, carboxylate radical and Pb2+.
Collapse
Affiliation(s)
- Jiahui Ji
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Huifang Wu
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Donghan Wang
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Dan Liu
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Xinyue Chen
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| | - Shilan Feng
- College of Pharmacy, Master of Pharmaceutical Analysis, Lanzhou University, Gansu Province, China.
| |
Collapse
|
15
|
Pang J, Xie R, Chua S, Zou Y, Tang M, Zhang F, Chai F. Preparation of fluorescent bimetallic silver/copper nanoparticles and their utility of dual-mode fluorimetric and colorimetric probe for Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120035. [PMID: 34126396 DOI: 10.1016/j.saa.2021.120035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
A dual-mode colorimetric and fluorimetric probe was successfully established based on silver/copper bimetallic nanoparticles (AgCu-BNPs). The AgCu-BNPs were confirmed as individually bimetallic nanoparticles with a mean size of 7.7 ± 0.2 nm, as characterized by high resolution transmission electron microscopy. Intriguingly, the AgCu-BNPs possess both surface plasmon resonances (SPR) and fluorescence emission. AgCu-BNPs emanate bright blue fluorescence with optical emission centered at 442 nm with high quantum yield of 30.3%, and AgCu-BNPs were attenuated or even quenched by Hg2+ via both static and dynamic quenching, coincidently accompanied by a visible color change, which endow AgCu-BNPs a unique utility as dual-mode colorimetric and fluorimetric probes. The detection limits as low as 89 nM and 9 nM were determined by dual-mode of AgCu-BNPs, respectively. The recovery rates in real samples were found to be 97.3-118.8%, and 89.5-112.7% by colorimetric and fluorescent methods separately, demonstrates the good environmental tolerance of the dual-mode probe.
Collapse
Affiliation(s)
- Jingyu Pang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Sophie Chua
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Zou
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Mingyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Fang Zhang
- Beibu Gulf Institute of Marine Advanced Materials, Beihai 536015, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China; Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| |
Collapse
|
16
|
Bhubhanil S, Talodthaisong C, Khongkow M, Namdee K, Wongchitrat P, Yingmema W, Hutchison JA, Lapmanee S, Kulchat S. Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci Rep 2021; 11:21836. [PMID: 34750447 PMCID: PMC8576043 DOI: 10.1038/s41598-021-01262-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Biocompatible materials that act as scaffolds for regenerative medicine are of enormous interest. Hydrogel-nanoparticle composites have great potential in this regard, however evaluations of their wound healing and safety in vivo in animal studies are scarce. Here we demonstrate that a guar gum/curcumin-stabilized silver nanoparticle hydrogel composite is an injectable material with exceptional wound healing and antibacterial properties. We show that the curcumin-bound silver nanoparticles themselves exhibit low cytotoxicity and enhance proliferation, migration, and collagen production in in vitro studies of human dermal fibroblasts. We then show that the hydrogel-nanoparticle composite promotes wound healing in in vivo studies on rats, accelerating wound closure by > 40% and reducing bacterial counts by 60% compared to commercial antibacterial gels. Histopathology indicates that the hydrogel composite enhances transition from the inflammation to proliferation stage of healing, promoting the formation of fibroblasts and new blood vessels, while target gene expression studies confirm that the accelerated tissue remodeling occurs along the normal pathways. As such these hydrogel composites show great promise as wound dressing materials with high antibacterial capacity.
Collapse
Grants
- 001/2562 Faculty of Medicine, Siam University, Thailand
- 002/2563 Faculty of Medicine, Siam University, Thailand
- 003/02/2563 Research Promotion and Development, Siam University, Thailand
- 003/02/2563 Research Promotion and Development, Siam University, Thailand
- P1952244 target development group grant (Cosmeceuticals) P1952244
- FT180100295 Australian Research Council (ARC) Future Fellowship
- Research and Graduate Studies, Khon Kaen, Thailand
Collapse
Affiliation(s)
- Sakkarin Bhubhanil
- Pre-Clinical Department, Faculty of Medicine, Siam University, Bangkok, 10160, Thailand
| | - Chanon Talodthaisong
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakon Pathom, 73170, Thailand
| | - Werayut Yingmema
- Laboratory Animal Center, Thammasat University, Pathumthani, 12120, Thailand
| | - James A Hutchison
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sarawut Lapmanee
- Pre-Clinical Department, Faculty of Medicine, Siam University, Bangkok, 10160, Thailand.
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
17
|
A Disposable Electrochemical Biosensor Based on Screen-Printed Carbon Electrodes Modified with Silver Nanowires/HPMC/Chitosan/Urease for the Detection of Mercury (II) in Water. BIOSENSORS-BASEL 2021; 11:bios11100351. [PMID: 34677307 PMCID: PMC8534075 DOI: 10.3390/bios11100351] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
This work describes the facile preparation of a disposable electrochemical biosensor for the detection of Hg(II) in water by modifying the surface of a screen-printed carbon electrode (SPCE). The surface modification consists of the immobilization of a composite layer of silver nanowires, hydroxymethyl propyl cellulose, chitosan, and urease (AgNWs/HPMC/CS/Urease). The presence of the composite was confirmed by scanning electron microscopy (SEM) and its excellent conductivity, due chiefly to the electrical properties of silver nanowires, enhanced the sensitivity of the biosensor. Under optimum conditions, the modified SPCE biosensor showed excellent performance for the detection of Hg(II) ions, with an incubation time of 10 min and a linear sensitivity range of 5–25 µM. The limit of detection (LOD) and limit of quantitation (LOQ) were observed to be 3.94 µM and 6.50 µM, respectively. In addition, the disposable and portable biosensor exhibited excellent recoveries for the detection of Hg(II) ions in commercial drinking water samples (101.62–105.26%). The results are correlated with those obtained from inductively coupled plasma optical emission spectrometry (ICP-OES), indicating that our developed sensor is a reliable method for detection of Hg(II) in real water samples. The developed sensor device is a simple, effective, portable, low cost, and user-friendly platform for real-time detection of heavy metal ions in field measurements with potential for other biomedical applications in the future.
Collapse
|
18
|
Abdollahiyan P, Hasanzadeh M, Pashazadeh-Panahi P, Seidi F. Application of Cys A@AuNPs supported amino acids towards rapid and selective identification of Hg(II) and Cu(II) ions in aqueous solution: An innovative microfluidic paper-based (μPADs) colorimetric sensing platform. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Talodthaisong C, Plaeyao K, Mongseetong C, Boonta W, Srichaiyapol O, Patramanon R, Kayunkid N, Kulchat S. The Decoration of ZnO Nanoparticles by Gamma Aminobutyric Acid, Curcumin Derivative and Silver Nanoparticles: Synthesis, Characterization and Antibacterial Evaluation. NANOMATERIALS 2021; 11:nano11020442. [PMID: 33572431 PMCID: PMC7916182 DOI: 10.3390/nano11020442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are applied in various applications in catalysis, biosensing, imaging, and as antibacterial agents. Here we to prepare ZnO nanomaterials decorated by γ-amino butyric acid (GABA), curcumin derivatives (CurBF2) and silver nanoparticles (CurBF2-AgNPs). The structures of all ZnO nanostructures were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-VIS spectrophotometry, fluorescence spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). Further, their antibacterial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were investigated through analysis of minimum inhibitory concentration (MIC) method. Among the prepared nanostructures, the ZnO NPs-GABA/CurBF2-AgNPs showed excellent antibacterial activity against both Gram-positive and -negative bacteria. ZnO NPs fabricated here may have potential use in future anti-bacterial compositions and coatings technologies.
Collapse
Affiliation(s)
- Chanon Talodthaisong
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (K.P.); (C.M.); (W.B.)
| | - Kittiya Plaeyao
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (K.P.); (C.M.); (W.B.)
| | - Chatariga Mongseetong
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (K.P.); (C.M.); (W.B.)
| | - Wissuta Boonta
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (K.P.); (C.M.); (W.B.)
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (R.P.)
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (O.S.); (R.P.)
| | - Navaphun Kayunkid
- College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand;
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (K.P.); (C.M.); (W.B.)
- Correspondence:
| |
Collapse
|