1
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
2
|
Jaswal A, Swami S, Saini A. Mercury (Hg 2+) Sensing Using Coumarin-Derived Fluorescent Chemo-Sensors: An Intuitive Development from 2015 to 2023. J Fluoresc 2024:10.1007/s10895-024-03889-1. [PMID: 39126606 DOI: 10.1007/s10895-024-03889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Mercury is known as a highly toxic metal that is poisonous even if present in a trace amount. Generally, it enters in the food chain (especially fish) and water resources via different pathways and leads to harmful effects. Owing to the detrimental nature of the metal, traditionally several methods were employed by researchers for regular monitoring of the mercury metal ions. However, these methods are associated with many limitations like high cost of technical expertise, and intricacy of the detection procedure. So, using these methods to detect mercury ions in real time is challenging. Therefore, in recent years fluorescent-based analytical tools emerged rapidly. Among the various fluorescent organic scaffolds, coumarin has been scorching, owing to quick response, light stability, high sensitivity, good selectivity, excellent fluorescence intensity, and fluorescence quantum yield. This review provides a deep dive into the coumarin-derived chemo-sensors development throughout 2015-2023. We anticipate that the review will assist to broad scientific community as a reference document to design more interesting sensors.
Collapse
Affiliation(s)
- Ansh Jaswal
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413
| | - Suman Swami
- Department of Chemistry, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Mohali, Punjab, India, 140413.
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| |
Collapse
|
3
|
Liu K, Song F, Wang J, Wang X, Kan C. A V-shaped bis-coumarin based fluorescence probe for F - detection in tea infusions and potable water and bioimaging applications in living systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124349. [PMID: 38692107 DOI: 10.1016/j.saa.2024.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Fluorine (F) is a pivotal element in the formation of human dental and skeletal tissues, and the consumption of water and tea constitutes a significant source of fluoride intake. However, prolonged ingestion of water and tea with excessive fluoride content can lead to fluorosis, which poses a serious health hazard. In this manuscript, a novel turn-on fluorescent probe DCF synthesized by bis-coumarin and tert-butyldiphenylsilane (TBDPS) was introduced for detecting F- in potable water and tea infusions. By leveraging the unique chemical affinity between fluoride and silicon, F- triggers the silicon-oxygen bond cleavage in DCF, culminating in a conspicuous emission of yellow fluorescence. Validated through a succession of optical tests, this probe exhibits remarkable advantages in terms of superior selectivity, a low detection limit, a large Stokes shift, and robust interference resistance when detecting inorganic fluoride. Moreover, it can serve as portable test strips for on-site real-time identification and quantitative analysis of F-. Furthermore, the application of DCF for in-situ monitoring and imaging of F- in zebrafish and soybean root tissues proved its significant value for F- detection in both animal and plant systems. This probe potentially functions as an efficient instrument for delving into the toxic mechanisms of fluoride in physiological processes.
Collapse
Affiliation(s)
- Kaiyue Liu
- College of Science, Department of Chemistry and Material Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Fuliang Song
- College of Science, Department of Chemistry and Material Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Jie Wang
- College of Science, Department of Chemistry and Material Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Xingrui Wang
- College of Science, Department of Chemistry and Material Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Chun Kan
- College of Science, Department of Chemistry and Material Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China.
| |
Collapse
|
4
|
Luo T, Huang S, Bai S, Feng B, Huang W, Cheng X, Liu M, Yao H, Zeng W. A novel dual-activatable ultrasensitive chemiluminescent probe for mercury (II) monitoring: From rational design to multiple application. Food Chem 2024; 447:138954. [PMID: 38461716 DOI: 10.1016/j.foodchem.2024.138954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Real-time optical sensing of mercury has been developed rapidly in recent years but remains challenging such as bearing background interference. Herein, a Hg2+ and base dual-activatable ultrasensitive chemiluminescent probe CL-Hg based on benzothiazole-phenoxyl-dioxetane with profits of excitation light-free and minimal interference is presented. The photophysical properties study and sensing performance verified CL-Hg is coupled with unique advantages of long-term detection (more than 400 min), ultrahigh sensitivity (LOD = 0.52 nM), and high specificity to Hg2+, and visualization detection by the paper-based test strips. More importantly, CL-Hg showed the qualitative and quantitative detection capability for Hg2+ with great recyclability in real samples of water, seafood, and beverages, holding great potential for on-site monitoring of Hg2+ levels in the actual samples. To our knowledge, this is the first work achieving the detection of Hg2+ by chemiluminescence. Overall, the Hg2+-activated visualization platform offers a practical method for detecting Hg2+ in various application scenarios.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Heying Yao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China.
| |
Collapse
|
5
|
Sun L, Zhou Z, Wu Y, Meng Z, Huang H, Li T, Wang Z, Yang Y. A novel colormetric and light-up fluorescent sensor from flavonol derivative grafted cellulose for rapid and sensitive detection of Hg 2+ and its applications in biological and environmental system. Int J Biol Macromol 2024; 266:131209. [PMID: 38565364 DOI: 10.1016/j.ijbiomac.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mercury ion (Hg2+) is one of harmful heavy metal ions that can accumulate inside the human organism and cause some health problems. In the article, a highly effective fluorescent probe named EC-T-PCBM was prepared by grafting flavonol derivatives onto ethyl cellulose for the specific recognition of Hg2+. EC-T-PCBM exhibited a remarkable fluorescence light-up response toward Hg2+ with excellent sensitivity. EC-T-PCBM possessed several prominent sensing properties for Hg2+, such as low detection limit (43.9 nM), short response time (5 min), and wide detection pH range (6-9). The response mechanism of EC-T-PCBM to Hg2+ has been verified through 1H NMR titration and DFT computation. Additionally, EC-T-PCBM not only can be used for accurately determining trace amount of Hg2+ in actual environmental water samples, but also can serve as a portable and rapid device by loading it on test strips for sensitive and selective visualization of Hg2+. More importantly, the confocal fluorescence imaging of onion cells suggested the favorable cell membrane permeability of EC-T-PCBM and its prominent ability to continuously monitor the enrichment from Hg2+ within fresh plant tissues.
Collapse
Affiliation(s)
- Linfeng Sun
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yangmei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Chelly M, Chelly S, Ferlazzo A, Neri G, Bouaziz-Ketata H. Lavandula multifida as a novel eco-friendly fluorescent-blue material for mercury ions sensing in seawater at femto-molar concentration. CHEMOSPHERE 2024; 352:141409. [PMID: 38346515 DOI: 10.1016/j.chemosphere.2024.141409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
In this paper, we present a novel fluorescent material based on the herbal tea of Lavandula multifida (Lm). The fluorescence properties of Lm aqueous extract were analyzed under various excitation wavelengths in the range of 290-450 nm. The Lm herbal infusion was found to be highly fluorescent, with an emission maximum at 450 nm under excitation at 390 nm. Consequently, it was exploited to develop a fluorescence method for detecting metal ions. Results obtained upon the addition of Hg2+, Na+, K+, Ca2+, Mg2+, Pb2+, Cd2+, Cu2+, Ni2+, Bi3+, Mn2+, Fe3+ and Co2+ ions showed that the fluorescence intensity of the Lm aqueous extract decreased strongly with the presence of mercury ions. A solid-state fluorescent sensor, based on Lm embedded into a Nafion membrane and deposited on a transparent polyethylene terephthalate (PET) sheet, has also been developed for the effective detection of Hg2+ ions. The Lm-Nafion-PET sensor exhibited good stability, high repeatability, and reproducibility. Furthermore, the Lm-Nafion/PET sensor demonstrated remarkable sensitivity to Hg2+ in sea water, with a limit of detection of 0.25 fM. To our knowledge, this is the first study which reports Lavandula multifida plant for making a novel eco-friendly fluorescent solid-state sensor for the detection of mercury ions at femto-molar concentrations in seawater.
Collapse
Affiliation(s)
- Meryam Chelly
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy; Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax, Tunisia
| | - Sabrine Chelly
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy; Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax, Tunisia
| | - Angelo Ferlazzo
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy.
| | - Hanen Bouaziz-Ketata
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax, Tunisia.
| |
Collapse
|
7
|
Li H, Li J, Pan Z, Zheng T, Song Y, Zhang J, Xiao Z. Highly selective and sensitive detection of Hg 2+ by a novel fluorescent probe with dual recognition sites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122379. [PMID: 36682255 DOI: 10.1016/j.saa.2023.122379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
A novel thionocarbonate-coumarin-thiourea triad-based probe with dual recognition sites for sensing mercury (Hg2+) ion was developed. The synthesized probe possessed both fluorogenic ("off-on") and chromogenic (from colorless to blackish brown) sensing performance towards Hg2+ ions. The fluorescence intensity was increased by 70 fold after the addition of Hg2+. As expected, the probe exhibited excellent selectivity and sensitivity for Hg2+ compared to other common competitive metal ions. The fluorescence intensity of the probe improved linearly with the increase of the concentration of Hg2+ (0-40 μM). Also, the minimum limit of detection (LOD) of the synthesized probe was 0.12 μM. Considering the importance of test feasibility in the harsh environment, the developed probe was applicable for detecting Hg2+ ions over a broad working pH range of 3-11. It is reliable and qualifies for the quantitative determination of Hg2+ concentrations in actual water samples. Finally, the probe achieved the bioimaging performance of Hg2+ in living cells and plants with good biocompatibility.
Collapse
Affiliation(s)
- Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhixiu Pan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhongwen Xiao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
8
|
Hong T, Cheng S, Zhong X, Zuo Y, Dong Y, Shi Z, Zhao Z. Novel fluorescent probe based on dicoumarin for detection of hydrogen sulfide in real samples. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tong Hong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Song Cheng
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Xuefang Zhong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Yiwei Zuo
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Yiming Dong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Zhichuan Shi
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission Southwest Minzu University Chengdu PR China
| | - Zhigang Zhao
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission Southwest Minzu University Chengdu PR China
| |
Collapse
|
9
|
Shi T, Xie Z, He J, Wu F, Li H, Guo J, Zhao J. Synthesis and Application of Acylhydrazone Probe with High Selectivity and Rapid Detection of Mercury Ion. ChemistrySelect 2023. [DOI: 10.1002/slct.202203827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tianzhu Shi
- Department of Brewing Engineering Moutai Institute Renhuai 564500 China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu 610500 China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu 610500 China
| | - Jiawei He
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu 610500 China
| | - Fuyong Wu
- Department of Brewing Engineering Moutai Institute Renhuai 564500 China
| | - Honghe Li
- Department of Brewing Engineering Moutai Institute Renhuai 564500 China
| | - Ju Guo
- Department of Brewing Engineering Moutai Institute Renhuai 564500 China
| | - Jingjing Zhao
- Department of Brewing Engineering Moutai Institute Renhuai 564500 China
| |
Collapse
|
10
|
|
11
|
A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect. Anal Bioanal Chem 2022; 414:4717-4726. [PMID: 35589864 DOI: 10.1007/s00216-022-04094-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
A new fluorescent probe TPE-GHK was synthesized containing a tetrastyrene (TPE) derivative as fluorophore and classical tripeptide (Gly-His-Lys-NH2) as a receptor based on the aggregation-induced emission (AIE) mechanism. TPE-GHK displayed high selectivity and rapid fluorescent "turn-on" response to Hg2+ among other competitive metal ions. The 2:1 complex binding mechanism of TPE-GHK toward Hg2+ was verified by fluorometric titration, Job's plots, and ESI-HRMS spectra. The fluorescent emission showed a good linear response in the range of 0-1.0 μM with the low detection limit of 28.6 nM. Meanwhile, TPE-GHK exhibited the excellent biocompatibility and low toxicity and was successfully applied in monitoring Hg2+ in living CAKI 2 cells, which demonstrated its potential application in environment and biological science. More importantly, TPE-GHK could be used to detect Hg2+ in two real water samples and also was successfully designed as test strips.
Collapse
|
12
|
Jiang L, Zheng T, Xu Z, Li J, Li H, Tang J, Liu S, Wang Y. New NIR spectroscopic probe with a large Stokes shift for Hg 2+ and Ag + detection and living cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120916. [PMID: 35085998 DOI: 10.1016/j.saa.2022.120916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A new near-infrared (NIR) probe based on a coumarinyl ligand (CL) was designed and synthesized. The probe CL can be used for simultaneous fluorescent turn-on and colorimetric detection of Hg2+ and Ag+ in ethanol/water medium. Colorless solution of probe CL changed to light yellow or dark yellow after addition of Hg2+ or Ag+ ions. Meanwhile the maximum absorption band shifted from 379 nm to 404 nm and the intensity increased enormously (for Hg2+) or moderately (for Ag+). Probe CL displayed an extraordinarily large Stokes shift of 316 nm and addition of Hg2+ or Ag+ to probe CL induced enhancement in the intensity of fluorescence emission at 695 nm by 15 or 8 fold. The detection limit of CL for Hg2+ and Ag+ ions is 0.83 and 8.8 μM, respectively. The applicable pH for sensing Hg2+ by probe CL is in a broad range of 2-12. Application of probe CL for in vitro U87MG cell imaging to detect Hg2+ ions was confirmed.
Collapse
Affiliation(s)
- Lin Jiang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co, Ltd, Penglai 265601, China
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Junjie Tang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Shicheng Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yiyang Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Kielesiński Ł, Deperasińska I, Morawski O, Vygranenko KV, Ouellette ET, Gryko DT. Polarized, V-Shaped, and Conjoined Biscoumarins: From Lack of Dipole Moment Alignment to High Brightness. J Org Chem 2022; 87:5961-5975. [PMID: 35410474 PMCID: PMC9087199 DOI: 10.1021/acs.joc.2c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Eleven conjoined
coumarins possessing a chromeno[3,4-c]chromene-6,7-dione
skeleton have been synthesized via the reaction
of electron-rich phenols with esters of coumarin-3-carboxylic acids,
catalyzed by either Lewis acids or 4-dimethylaminopyridine. Furthermore,
Michael-type addition to angular benzo[f]coumarins
is possible, leading to conjugated helical systems. Arrangement of
the electron-donating amino groups at diverse positions on this heterocyclic
skeleton makes it possible to obtain π-expanded coumarins with
emission either sensitive to, or entirely independent of, solvent
polarity with large Stokes shifts. Computational studies have provided
a rationale for moderate solvatochromic effects unveiling the lack
of collinearity of the dipole moments in the ground and excited states.
Depending on the functional groups present, the obtained dyes are
highly polarized with dipole moments of ∼14 D in the ground
state and ∼20–25 D in the excited state. Strong emission
in nonpolar solvents, in spite of the inclusion of a NO2 group, is rationalized by the fact that the intramolecular charge
transfer introduced into these molecules is strong enough to suppress
intersystem crossing yet weak enough to prevent the formation of dark
twisted intramolecular charge transfer states. Photochemical transformation
of the dye possessing a chromeno[3,4-c]pyridine-4,5-dione
scaffold led to the formation of a spirocyclic benzo[g]coumarin.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Olaf Morawski
- Institute of Physics of Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Kateryna V Vygranenko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel T Gryko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Cheng X, Huang S, Lei Q, Chen F, Zheng F, Zhong S, Huang X, Feng B, Feng X, Zeng W. The exquisite integration of ESIPT, PET and AIE for constructing fluorescent probe for Hg(II) detection and poisoning. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Wang D, Ma Z, Xi J, Wang N, Wang T, Liang Y, zhang Z. Synthesis of V‐shaped bis‐coumarins via Aldol reaction/double Lactonization cascade reaction from bis(2‐hydroxyphenyl)methanone and Meldrum's acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ding Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhishuang Ma
- Shaanxi Normal University Basic Experimental Teaching Center CHINA
| | - Jin Xi
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Nana Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Tao Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong Liang
- Beckman Research Institute Department of molecular medicine CHINA
| | - zunting zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering West Chang'an Avenue, Chang'an District 710119 xi'an CHINA
| |
Collapse
|
16
|
Khoshmaram L, Mohammadi M, Nazemi Babadi A. A portable low-cost fluorimeter based on LEDs and a smart phone. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Lei S, Meng X, Wang L, Zhou J, Qin D, Duan H. A Naphthalimide-Based Fluorescent Probe for the Detection and Imaging of Mercury Ions in Living Cells. ChemistryOpen 2021; 10:1116-1122. [PMID: 34726842 PMCID: PMC8562314 DOI: 10.1002/open.202100204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
The selective and efficient monitoring of mercury (Hg2+ ) contamination found in the environment and ecosystem has been carried out. Thus, a new 1,8-naphthalimide-based fluorescent probe NADP for the detection of Hg2+ based on a fluorescence enhancement strategy has been designed and synthesized. The NADP probe can detect Hg2+ with high selectivity and sensitivity and a low detection limit of 13 nm. The detection mechanism was based on a Hg2+ -triggered deprotection reaction, resulting in a dramatic change in fluorescence from colorless to green at physiological pH. Most importantly, biological investigation has shown that the NADP probe can be successfully applied to the monitoring of Hg2+ in living cells and zebrafish with low cytotoxicity.
Collapse
Affiliation(s)
- Shaoyu Lei
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Xia Meng
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Lizhen Wang
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences)Jinan250103Shandong ProvinceChina
| | - Jianhua Zhou
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Dawei Qin
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| | - Hongdong Duan
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Ji'nanShandong Province250353China
| |
Collapse
|