1
|
Alias AHD, Shafie MH. Star anise (Illicium verum Hook. F.) polysaccharides: Potential therapeutic management for obesity, hypertension, and diabetes. Food Chem 2024; 460:140533. [PMID: 39053285 DOI: 10.1016/j.foodchem.2024.140533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
This study explores the extraction of polysaccharides from star anise (Illicium verum Hook. f.) with its anti-obesity, antihypertensive, antidiabetic, and antioxidant properties. The aim is to optimize the extraction conditions of star anise polysaccharides (SAP) utilizing propane alcohols-based deep eutectic solvents and microwave-assisted methods. The optimized conditions resulted in an extraction yield of 5.14%. The characteristics of acidic pectin-like SAP, including high viscosity (44.86 mPa s), high oil-holding capacity (14.39%), a high degree of esterification (72.53%), gel-like properties, highly amorphous, a high galacturonic acid concentration, and a highly branching size polysaccharide structure, significantly contribute to their potent inhibition of pancreatic lipase (86.67%), angiotensin-converting enzyme (73.47%), and α-glucosidase (82.33%) activities as well as to their antioxidant properties of azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 34.94%) and ferric ion reducing antioxidant power (FRAP, 0.56 mM FeSO4). Therefore, SAP could be used as a potential therapeutic agent for obesity, hypertension, and diabetes mellitus management.
Collapse
Affiliation(s)
- Abu Hurairah Darwisy Alias
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia..
| |
Collapse
|
2
|
Machado AMR, Teodoro AJ, Mariutti LRB, Fonseca JCND. Tamarillo ( Solanum betaceum Cav.) wastes and by-products: Bioactive composition and health benefits. Heliyon 2024; 10:e37600. [PMID: 39309964 PMCID: PMC11416485 DOI: 10.1016/j.heliyon.2024.e37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.
Collapse
Affiliation(s)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
3
|
Silva DJS, Santos JAV, Pinto JCN, Llorent-Martínez EJ, Castilho PC, Batista de Carvalho LAE, Marques MPM, Barroca MJ, Moreira da Silva A, da Costa RMF. Spectrochemical analysis of seasonal and sexual variation of antioxidants in Corema album (L.) D. Don leaf extracts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122816. [PMID: 37192576 DOI: 10.1016/j.saa.2023.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Bioactive phytoconstituents have been increasingly investigated for their potential human health benefits. Corema album (L.) D. Don, an Ericaceae, reportedly has antioxidant, antimicrobial and anticancer properties. Aiming at enhancing its nutraceutical potential, we performed a spectrochemical analysis of hydroethanolic extracts from C. album leaves. We report on changes in the antioxidant activity of the extracts, as well as in the accumulation of key phytoconstituents (namely phenolic compounds), in female and male samples, throughout three harvesting seasons (February, July, and October). For each extract, the antioxidant activity was assessed by different spectrophotometric methods. Simultaneously, attenuated total reflectance Fourier transform mid-infrared spectroscopy (FTIR-ATR), and high-performance liquid chromatography - electrospray ionisation - quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS), were used to identify and monitor variations in the composition of phenolic compounds in the extracts. The main compounds identified were epicatechin, laricitrin-O-hexoside isomers, and myricetin-O-hexoside isomers. Significant differences were found in the composition and relative abundance of the compounds of interest, according to sex and season. Overall, a trend was observed whereby phenolic content and antioxidant activities were higher in males and increased between the earlier and the latest harvests. Based on these results, we may conclude that late summer or early autumn harvests are preferable when aiming at the highest yearly content of bioactive compounds. Additionally, it should be considered that extracts from male individuals typically display higher antioxidant activities. Ultimately, our understanding of C. album in the context of nutraceutical applications is benefited from the quantitative and qualitative portrait provided here, thus promoting its relevance as a source of bioactive compounds.
Collapse
Affiliation(s)
- Daniela J S Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana C N Pinto
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - Paula C Castilho
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Ricardo M F da Costa
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Correia M, Lopes T, Puga AP, Pinto G, Canhoto J, Correia S. Morpho-Physiological Evaluation of Solanum betaceum Cav. In Vitro Cloned Plants: A Comparison of Different Micropropagation Methods. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091884. [PMID: 37176943 PMCID: PMC10180550 DOI: 10.3390/plants12091884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Tamarillo (Solanum betaceum Cav.) is a subtropical solanaceous tree with increasing agronomic interest due to its nutritious edible fruits. Growing demand for tamarillo plants and fruits requires optimization of existing propagation methods and scaled-up systems for large-scale cloning of selected germplasm. Three in vitro protocols have been used to micropropagate tamarillo: (1) axillary shoot proliferation in a semisolid medium, (2) organogenesis, and (3) somatic embryogenesis procedures. Variables such as the age of the established shoot cultures and rooting treatments were also analyzed. The morphological and physiological quality of acclimatized plants derived from all the methodologies were compared, with seed-derived plants used as a control group. Overall, the results show that in vitro-derived plants have a similar development to seed-derived plants. Micropropagation by axillary shoot proliferation was highly efficient, with rooting rates above 80% in most treatments. Organogenesis induction was more effective from lamina explants using MS media with 2.0 mg·L-1 6-benzylaminopurine. Both organogenesis and somatic embryogenesis-derived plants were also morphologically and physiologically equivalent to seed and axillary shoot-derived plants. The specificities of each micropropagation method are discussed.
Collapse
Affiliation(s)
- Mariana Correia
- Center for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Tércia Lopes
- Center for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Patrícia Puga
- Center for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge Canhoto
- Center for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Center for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLAB, Estrada de Gil Vaz, 7350-999 Elvas, Portugal
| |
Collapse
|
5
|
Rito M, Marques J, da Costa RMF, Correia S, Lopes T, Martin D, Canhoto JMPL, Batista de Carvalho LAE, Marques MPM. Antioxidant Potential of Tamarillo Fruits-Chemical and Infrared Spectroscopy Analysis. Antioxidants (Basel) 2023; 12:antiox12020536. [PMID: 36830094 PMCID: PMC9952541 DOI: 10.3390/antiox12020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Native to South America, tamarillo (Solanum betaceum Cav.) is a small tree cultivated as a fruit crop in several regions of the world. Known for its sweet and sour taste, tamarillo fruits are very nutritious due to the presence of health-beneficial components such as fiber, vitamins, and antioxidants. Despite its nutritional value, tamarillo remains poorly known in global markets. The present work aims to study the antioxidant activity of four genotypes of tamarillo. Several chemical assays were performed to assess the antioxidant components and antioxidant activity of aqueous ethanolic extracts from each genotype. Overall, the Mealhada genotype (a red cultivar) showed the most interesting results, displaying the highest amount of total phenolic, flavonoids, and anthocyanin contents, as well as higher antioxidant activity. To evaluate the composition of the extract, Fourier-transform infrared spectroscopy (FTIR) was used to characterize important components in aqueous ethanolic extracts of the fruits, having revealed the presence of high amounts of phenols (the main compounds responsible for antioxidant activity), as well as triterpenoids and polysaccharides. The present results highlight the potential nutraceutical importance of tamarillo fruits.
Collapse
Affiliation(s)
- Miguel Rito
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Joana Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ricardo M. F. da Costa
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | - Sandra Correia
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
| | - Tércia Lopes
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Daniel Martin
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jorge M. P. L. Canhoto
- Centre for Functional Ecology, Associate Laboratory Terra, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
6
|
Casimiro B, Mota I, Veríssimo P, Canhoto J, Correia S. Enhancing the Production of Hydrolytic Enzymes in Elicited Tamarillo ( Solanum betaceum Cav.) Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010190. [PMID: 36616319 PMCID: PMC9824068 DOI: 10.3390/plants12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/07/2023]
Abstract
Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.
Collapse
Affiliation(s)
- Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence: (B.C.); (S.C.)
| | - Inês Mota
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paula Veríssimo
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
- Correspondence: (B.C.); (S.C.)
| |
Collapse
|
7
|
Suárez-Montenegro ZJ, Ballesteros-Vivas D, Gallego R, Valdés A, Sánchez-Martínez JD, Parada-Alfonso F, Ibáñez E, Cifuentes A. Neuroprotective Potential of Tamarillo ( Cyphomandra betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front Nutr 2021; 8:769617. [PMID: 34869538 PMCID: PMC8634709 DOI: 10.3389/fnut.2021.769617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tamarillo (Cyphomandra betacea (Cav.) Sendt.), or tree tomato, is a tropical fruit from the Andean region of South America; it is highly rich in vitamins, minerals, and polyphenolic compounds. In this study, extracts from tamarillo epicarp (TE) were obtained by pressurized liquid extraction (PLE), and their in-vitro neuroprotective potential was assessed. A central composite design with response surface methodology was performed to optimize PLE as a function of solvent composition and temperature. Selected response variables were extraction yield, total phenolic content (TPC), total flavonoid content (TFC), total carotenoid content (TCC), antioxidant (ABTS), and anti-inflammatory (LOX) activities, and anti-acetylcholinesterase (AChE) inhibitory capacity. According to the desirability function, the optimal conditions were 100% ethanol and 180°C with a 0.87 desirability value. Next, the anti-butyrylcholinesterase enzyme (BChE), reactive oxygen species (ROS), and reactive nitrogen species (RNS) inhibition as well as cytotoxicity in HK-2, THP-1 monocytes, and SH-5YSY neuroblastoma cell lines were studied for the TE extract obtained under optimized conditions. The optimum TE extract provided the following results: extraction yield (36.25%), TPC (92.09 mg GAE/g extract), TFC (4.4 mg QE/g extract), TCC (107.15 mg CE/g extract), antioxidant capacity (ABTS, IC50 = 6.33 mg/ml extract), LOX (IC50 = 48.3 mg/ml extract), and AChE (IC50 = 97.46 mg/ml extract), and showed no toxicity at concentration up to 120 μg/ml extract for all the tested cell lines. Finally, chemical characterization by liquid chromatography-tandem mass spectrometry (UHPLC-q-TOF-MS/MS) of the optimum TE extract exhibited an important presence of hydroxycinnamic acid derivatives and other phenolic acids as well as quercetin hexoside and rutin, as main metabolites responsible for the observed biological properties. All these results suggested that TE, which represents between 8 and 15% of the total fruit, could become a promising natural by-product with a potential "multitarget" activity against Alzheimer's disease.
Collapse
Affiliation(s)
- Zully Jimena Suárez-Montenegro
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain.,Departamento de Procesos Industriales, Facultad de Ingenieria Agroindustrial, Universidad de Nariño, Pasto, Colombia
| | - Diego Ballesteros-Vivas
- High Pressure Laboratory, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Universidad Nacional de Colombia, Bogotá, Colombia.,Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rocío Gallego
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | | | - Fabián Parada-Alfonso
- High Pressure Laboratory, Departamento de Química, Facultad de Ciencias, Food Chemistry Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elena Ibáñez
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC), Madrid, Spain
| |
Collapse
|
8
|
Marques J, Martin D, Amado AM, Lysenko V, Osório N, Batista de Carvalho LAE, Marques MPM, Barroca MJ, Moreira da Silva A. Novel Insights into Corema album Berries: Vibrational Profile and Biological Activity. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091761. [PMID: 34579295 PMCID: PMC8470319 DOI: 10.3390/plants10091761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 05/04/2023]
Abstract
This study reports an evaluation of the biological properties of the edible berries from Corema album, an endemic shrub of the Portuguese coastline, aiming at its use as a nutraceutical. Different methanolic extracts were obtained from the pulp and seed of fresh berries: pulp extract, seed residue, and seed oil (extracted and characterized for the first time). For each of these, the antioxidant activity was assessed, by different methods, as well as the antimicrobial ability. Overall, the seeds were shown to be the most nutraceutical part of the berry since they showed higher antioxidant activity, while the pulp extract displayed a significant antimicrobial capacity against several clinically relevant bacterial strains. Furthermore, the extracts were fully characterized by complementary infrared and Raman spectroscopy, revealing the presence of phenolic acids, polysaccharides, sugars, and triterpenoids in the pulp, high content of unsaturated fatty acids in the seed oil, and significant amounts of phenolics and carotenoids in the seed residue. These results pave the way for a reliable correlation between chemical composition and biological activity, in edible fruit samples.
Collapse
Affiliation(s)
- Joana Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Correspondence:
| | - Daniel Martin
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
| | - Ana M. Amado
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
| | - Viktoriya Lysenko
- College of Health Technology of Coimbra, Polytechnic Institute of Coimbra, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
| | - Nádia Osório
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- College of Health Technology of Coimbra, Polytechnic Institute of Coimbra, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
| | - Luís A. E. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
| | - Maria Paula M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Maria João Barroca
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Aida Moreira da Silva
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.M.); (A.M.A.); (N.O.); (L.A.E.B.d.C.); (M.P.M.M.); (M.J.B.); (A.M.d.S.)
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|