1
|
Cai JQ, Zheng SQ, Tao B, Zhang WQ, Ma C, Wang ZM. The investigation of the interaction of warangalone with transferrin as a therapeutic biological macromolecule and the formation of a protein-ligand nanocomplex with superior anticancer activity against lung cancer cells. Int J Biol Macromol 2025; 302:139951. [PMID: 39824419 DOI: 10.1016/j.ijbiomac.2025.139951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods. The anticancer properties of warangalone and warangalone-transferrin NPs in lung cancer were subsequently evaluated. The findings showed that the hydrodynamic size, PDI, and zeta potential values of transferrin NPs were 122.4 ± 12.38 nm, 0.210, and -23.40 ± 3.28 mV, respectively. The association between warangalone and transferrin NP showed a strong binding strength (log Kb = 5.44 ± 0.07), while this affinity was reduced for the warangalone and the transferrin protein (log Kb = 4.88 ± 0.04). Theoretical research indicated that hydrophobic interactions serve as the main driving forces for the interaction of warangalone and transferrin. Cellular assays showed that the warangalone-transferrin NPs significantly affected cell death in lung cancer cells. This research, by offering promising data, could be highly beneficial for advancing warangalone-transferrin NPs as a promising anticancer platform.
Collapse
Affiliation(s)
- Jian-Qiao Cai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Si-Qiang Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Wen-Qiang Zhang
- Department of Thoracic Surgery, Klinikum Ernst von Bergmann, Academic Hospital of the Charité-Universitätsmedizin Humboldt University Berlin, Potsdam, Germany
| | - Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zi-Ming Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
2
|
Zhang Q, Zhang Y, Zhang S, Zeng Y, He Z, Yang K, Luo J, Guo H, Chi B. Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125652. [PMID: 39736258 DOI: 10.1016/j.saa.2024.125652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells. Thus, understanding the interactions between apo-TRF and IDM may serve as a foundation for identifying novel therapeutic strategies for cancer associated with iron imbalances. In this study, multi-spectroscopic methods and computer simulations were employed to explore the binding mode between apo-TRF and IDM, as well as to investigate IDM's impact on the biological functions of apo-TRF. Multi-spectroscopic studies indicated that IDM and apo-TRF formed binary complexes with Ka of 1.274 × 104 M-1 at 298 K. The H-bonds and van der Waals forces were the dominant interaction forces based on an analysis of the thermodynamic parameters (ΔHθ = -37.565 kJ/mol, ΔSθ = -46.665 J mol-1 K-1). Three-dimensional (3D) and circular dichroism (CD) spectra revealed the conformational of apo-TRF changed by IDM, resulting in a looser and more unfolded structure. With escalating concentrations of IDM, a notable reduction in the binding affinity between apo-TRF and Fe3+ was observed, indicating that IDM could potentially alter iron transfer mediated by apo-TRF. Molecular docking analysis indicated that IDM docked in the apo-TRF iron-binding pocket. After in-depth analysis of the molecular dynamic results, it was found that Asp392 played an important role in this interaction. In addition, accessible surface area (ASA) values of key residues (Tyrosine, Aspartate, and Histidine) for iron transfer were altered, which could be a possible reason for the change in iron transport.
Collapse
Affiliation(s)
- Qiumei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shuyuan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yujing Zeng
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zimeng He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
3
|
Lv C, Xu J, Pan T, Shi W, Zhang W, Wu Y, Li Y, Cao L, Zhan F, Fan S, Deng J, Zhang L. Spectroscopic study and in vitro anticancer effect toward colorectal cancer cells of a hydroxyaurone leptosidin compound complexed with transferrin. Int J Biol Macromol 2024; 282:136874. [PMID: 39476908 DOI: 10.1016/j.ijbiomac.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
This paper investigated the interaction between leptosidin, an aurone-based derivative and a subset of the flavone family, and transferrin using a variety of spectroscopic, molecular docking, and molecular dynamic investigations. The anticancer mechanism of leptosidin and transferrin-leptosidin complex against colorectal cancer cells was then assessed. It was demonstrated that the addition of leptosidin resulted in a significant quenching of transferrin's fluorescence intensity and a redshift of 8 nm. Moreover, a static transferrin-leptosidin complex with a single binding capability and logKa values ranging from 4.80 to 4.43 was generated, mostly by hydrogen bonding and electrostatic interactions. Fluctuations and disruptions in the transferrin structure and binding site properties were discovered through molecular docking, synchronous fluorescence spectroscopy, second derivative fluorescence spectroscopy, circular dichroism (CD), and molecular dynamic simulation studies after interaction with leptosidin. Cellular assays showed that complexing leptosidin with transferrin improved its anticancer effects in colorectal cancer cells. Better cellular internalization, membrane leakage, inhibition of colony formation, and upregulation of caspase-9 and -3 expression and activity in comparison with leptosidin were the mechanisms underlying the improved anticancer effect of complex species. Finally, it was demonstrated that the leptosidin-transferrin complex's antiproliferative actions were mediated by the downregulation of the PI3K/Akt signaling pathway in colorectal cancer cells. Further research is necessary to fully understand the evolution of anticancer drug-protein complexes, although this paper may provide insightful information in the interim.
Collapse
Affiliation(s)
- Chunxin Lv
- Oncology Department, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Jiayi Xu
- Geriatric Department, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Wen Shi
- Department of Dermatology, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuesong Wu
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Diagnosis and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yaoxu Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Diagnosis and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing 404100, China; Department of Stomatology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing University, School of Medicine, Chongqing, 404000, China
| | - Shanshan Fan
- Oncology Department, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China.
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, SE1 1UL, United Kingdom.
| | - Lei Zhang
- Department of Gastroenterology, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China.
| |
Collapse
|
4
|
Fossatelli L, Maroccia Z, Fiorentini C, Bonucci M. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. Int J Mol Sci 2023; 25:251. [PMID: 38203418 PMCID: PMC10778966 DOI: 10.3390/ijms25010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Apigenin is one of the most widespread flavonoids in the plant kingdom. For centuries, apigenin-containing plant preparations have been used in traditional medicines to treat diseases that have an inflammatory and/or degenerative component. In the 1980s, apigenin was proposed to interfere with the process of carcinogenesis. Since then, more and more evidence has demonstrated its anticancer efficacy, both in vitro and in vivo. Apigenin has been shown to target signaling pathways involved in the development and progression of cancer, such as PI3K/Akt/mTOR, MAPK/ERK, JAK/STAT, NF-κB, and Wnt/β-catenin pathways, and to modulate different hallmarks of cancer, such as cell proliferation, metastasis, apoptosis, invasion, and cell migration. Furthermore, apigenin modulates PD1/PD-L1 expression in cancer/T killer cells and regulates the percentage of T killer and T regulatory cells. Recently, apigenin has been studied for its synergic and additive effects when combined with chemotherapy, minimizing the side effects. Unfortunately, its low bioavailability and high permeability limit its therapeutic applications. Based on micro- and nanoformulations that enhance the physical stability and drug-loading capacity of apigenin and increase the bioavailability of apigenin, novel drug-delivery systems have been investigated to improve its solubility.
Collapse
Affiliation(s)
- Laura Fossatelli
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| |
Collapse
|
5
|
Cazacu N, Stan DL, Târcă R, Chilom CG. Binding of flavonoids to yeast aldehyde dehydrogenase: a molecular mechanism and computational approach. J Biomol Struct Dyn 2023; 41:11247-11254. [PMID: 36571489 DOI: 10.1080/07391102.2022.2160820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
The interaction of three flavonoids, apigenin, fisetin and quercetin with yeast aldehyde dehydrogenase, ALDH was studied by spectroscopic and molecular docking methods. A combination of both static and dynamic processes interaction mechanism for the binding of flavonoids with ALDH was found. The interaction takes place with moderate binding and the interaction was driven by hydrophobic contacts. The microenvironments of the fluorescent amino acids changed upon flavonoids binding. The distances between ALDH and flavonoids determined by Förster Resonant Energy Transfer (FRET) confirmed the results obtained by fluorescence. The structure of ALDH against thermal denaturation was stabilized by apigenin and destabilized by fisetin and quercetin. Molecular docking simulation showed that all flavonoids bind to the same site of ALDH and confirmed the moderate binding straight found in fluorescence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Diana L Stan
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Raluca Târcă
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
6
|
de Freitas Rocha J, de Castro Viana L, Filho LCPA, de Almeida TS, Neto JJL, Neto VV, Tabosa PMS, Nunes-Pinheiro DCS, Girão-Carmona VCC, Carvalho AFU, Mota EF. In vitro anti-inflammatory activity and ameliorative effects on gastric ulcers of Licania rigida benth seed extract. Inflammopharmacology 2023; 31:2631-2640. [PMID: 37420144 DOI: 10.1007/s10787-023-01283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Licania rigida Benth., a Brazilian endemic plant, has been traditionally used for treating inflammation and stomach pain. This work investigates the anti-inflammatory and gastroprotective activities of the ethanolic extract from L. rigida seeds (EELr) by in vitro and in vivo methods. The phytochemical profile was determined and the in vitro antioxidant activity was investigated by radical scavenging and thiobarbituric acid reactive substances methods. The ovalbumin denaturation method was used with sodium diclofenac as standard for the in vitro anti-inflammatory activity assessment. Acetylsalicylic acid was used to induce gastric ulcers in male mice and then to evaluate the preventive and therapeutic gastroprotective effect of EELr, using omeprazole as the reference drug. The extract exhibited relevant amount of phenolic compounds and flavonoids, in particular, demonstrating in vitro antioxidant capacity. EELr was able to inhibit almost 60% of ovalbumin denaturation at a concentration considered low. It also prevented the decrease of biochemical markers for oxidative stress such as superoxide dismutase (SOD) and reduced glutathione (GSH) in the stomach and SOD and catalase (CAT) in the liver. EELr also significantly decreased the number of lesions as well as reduced the ulcerated area when used as therapy. The observed effect may be due to its phenolic compounds, such as chlorogenic acid, caffeic acid and tannins, as previously reported. EELr is a potential source of compounds with anti-inflammatory activity, protects the liver from oxidative damage and improves healing of aspirin-induced ulcers. This work contributes to the knowledge of L. rigida species.
Collapse
Affiliation(s)
| | | | | | - Thiago Silva de Almeida
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
- Laboratory of Phytochemistry and Process Integration, Northeast Strategic Technologies Center-CETENE, Recife, Pernambuco, 50740-545, Brazil
| | - José Joaquim Lopes Neto
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
- Pharmacy Course, Estacio São Luís University Center, São Luís, Maranhão, 65020-250, Brazil
| | - Veríssimo Vieira Neto
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Pedro Matheus Sousa Tabosa
- Biochemistry and Molecular Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | | | | | | | - Erika Freitas Mota
- Biology Department, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
7
|
Cazacu N, Chilom CG. Modulation of the structural and functional properties of α1-antitrypsin by interaction with flavonoid luteolin. J Biomol Struct Dyn 2023; 41:7884-7891. [PMID: 36184736 DOI: 10.1080/07391102.2022.2127909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 10/07/2022]
Abstract
α1-antitrypsin (A1AT) is a circulating serine protease inhibitor and an acute phase reactant, the deficiency of which can lead to liver failure and chronic lung disease. Flavonoid treatment may induce changes in α1-antitrypsin production in some human cells. The purpose of this study is to investigate the properties of the A1AT protein that interacts with the flavonoid luteolin, which exhibits numerous properties, including antioxidant properties. For this purpose, multi-spectroscopic (UV-Vis spectroscopy, fluorescence and FRET) methods and molecular docking were used. The intrinsic fluorescence of A1AT was quenched by luteolin through a static mechanism. Luteolin binds to one site of the A1AT protein, with a moderate binding constant, and the binding process was driven by entropy and hydrophobic interactions. Hydrophobicity around Trp decreased as a result of luteolin binding to the A1AT site and FRET occurred at a distance of 3.11 nm. Under the action of temperature, the stability of A1AT structure was decreased by the presence of luteolin. Molecular docking confirmed that luteolin binds to one site, with a moderate affinity. The results would give a better understanding of the functional changes that occurred in the structure of A1AT induced by luteolin binding, which may have implications in the field of pharmaceutical research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
8
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
9
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
10
|
Li X, Han L, Song Z, Xu R, Wang L. Comparative study on the interaction between transferrin and flavonols: Experimental and computational modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122128. [PMID: 36455462 DOI: 10.1016/j.saa.2022.122128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Transferrin is the indispensable component in the body fluids and has been explored as a potential drug carrier for target drugs to cancer cells. Flavonols are widely distributed in plants and shown a wide range of biological activities. In the present study, the interaction between flavonols (including galangin, kaempferol, quercetin, and myricetin) and transferrin under physiological conditions was investigated by using experimental as well as computational approaches. Fluorescence data reveal that the fluorescence quenching mechanism of transferrin by flavonols is static quenching. Transferrin has moderate affinity with flavonols, and the binding constants (Ka) are 103-104 L/mol. In addition, there are two different binding sites for the interaction between kaempferol and transferrin. Thermodynamic parameter analysis shows that the interaction of flavonols and transferrin is synergistically driven by enthalpy and entropy. Hydrophobic interaction, electrostatic force and hydrogen bonds are the main force types. Synchronous fluorescence spectroscopy shows that flavonols decrease the hydrophobicity of the microenvironment around tryptophan (Trp) and have no effect on the microenvironment around tyrosine (Tyr). UV-vis and CD spectra show that the interaction between transferrin and flavonols leads to the loosening and unfolding of transferrin backbone. The increase of β-sheet is accompanied by the decrease of α-helix and β-turn. The specific binding sites of flavonols to transferrin are confirmed by molecular docking. Molecular dynamic simulation suggests that the transferrin-flavonols docked complex is stable throughout the simulation trajectory.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Linyu Han
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Lixia Wang
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| |
Collapse
|
11
|
Sandu N, Popescu AI, Chilom CG. Probing the interaction of fisetin with human serum transferrin via spectroscopic and molecular docking approaches. J Biomol Struct Dyn 2022; 40:9613-9619. [PMID: 34098861 DOI: 10.1080/07391102.2021.1934545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The binding of fisetin to human serum transferrin (HST) was investigated by spectroscopic (steady-state fluorescence, synchronous fluorescence, Förster resonance energy transfer) and molecular docking approaches. HST fluorescence is quenched by fisetin by a static process. The binding takes place with a moderate affinity and it is driven by hydrogen bonding and van der Waals forces. Synchronous fluorescence study indicates that Trp is more involved in the fluorescent quenching of HST by fisetin than Tyr. The energy transfer between HST and fisetin occurs at a distance of 2.31 nm confirming the results obtained by fluorescence. The binding of fisetin to HST favors thermal denaturation of HST conformation. The transition temperature for HST was obtained at 53.81 °C while the presence of the fisetin led to its change to 49.06 °C. The molecular docking of fisetin to HST confirms the results obtained by the spectroscopic experiments showing a moderate affinity of fisetin for HST.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Sandu
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Romania
| | - Aurel I Popescu
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Romania
| | - Claudia G Chilom
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Romania
| |
Collapse
|
12
|
Cyboran-Mikołajczyk S, Bonarska-Kujawa D, Męczarska K, Krawczyk-Łebek A, Kostrzewa-Susłow E. Novel O-Methylglucoside Derivatives of Flavanone in Interaction with Model Membrane and Transferrin. MEMBRANES 2022; 12:978. [PMID: 36295737 PMCID: PMC9609356 DOI: 10.3390/membranes12100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Flavonoids were biotransformed using various microorganisms, in order to obtain new compounds with potentially high biological activity. The aim of this work was to determine and compare the biological activity of four novel 6-methylflavanone O-methylglucosides. The tested compounds have the same flavonoid core structure and an attached O-methylglucose and hydroxyl group at different positions of ring A or B. The studies on their biological activity were conducted in relation to phosphatidylcholine membrane, erythrocytes and their membrane, and with human transferrin. These studies determined the compounds' toxicity and their impact on the physical properties of the membranes. Furthermore, the binding ability of the compounds to holo-transferrin was investigated. The obtained results indicate that used compounds bind to erythrocytes, change their shape and decrease osmotic fragility but do not disrupt the membrane structure. Furthermore, the used compounds ordered the area of the polar heads of lipids and increased membrane fluidity. However, the results indicate the binding of these compounds in the hydrophilic region of the membranes, like other flavonoid glycosides. The used flavanones formed complexes with transferrin without inducing conformational changes in the protein's structure. The relationship between their molecular structure and biological activity was discussed.
Collapse
Affiliation(s)
- Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
13
|
Chen F, Zhou L, Zhou B, Zhang S, Ma X, Zhou H, Tuo X. Elucidation on the interaction between transferrin and ascorbic acid: A study based on spectroscopic analysis, molecular docking technology, and antioxidant evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Cazacu N, Popescu AI, Chilom CG. Spectroscopic and molecular docking approach of the interaction of vitamins with human serum transferrin. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Chilom CG, Sandu N, Iftimie S, Bălăşoiu M, Rogachev A, Orelovich O, Stolyar S. Interactions of Chemically Synthesized Ferrihydrite Nanoparticles with Human Serum Transferrin: Insights from Fluorescence Spectroscopic Studies. Int J Mol Sci 2021; 22:ijms22137034. [PMID: 34210014 PMCID: PMC8268179 DOI: 10.3390/ijms22137034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
Human serum transferrin (HST) is a glycoprotein involved in iron transport that may be a candidate for functionalized nanoparticles to bind and target cancer cells. In this study, the effects of the simple and doped with cobalt (Co) and copper (Cu) ferrihydrite nanoparticles (Fh-NPs, Cu-Fh-NPs, and Co-Fh-NPs) were studied by spectroscopic and molecular approaches. Fluorescence spectroscopy revealed a static quenching mechanism for all three types of Fh-NPs. All Fh-NPs interacted with HST with low affinity, and the binding was driven by hydrogen bonding and van der Waals forces for simple Fh-NPs and by hydrophobic interactions for Cu-Fh-NPs and Co-Fh-NPs binding, respectively. Of all samples, simple Fh-NPs bound the most to the HST binding site. Fluorescence resonance energy transfer (FRET) allowed the efficient determination of the energy transfer between HST and NPs and the distance at which the transfer takes place and confirmed the mechanism of quenching. The denaturation of the HST is an endothermic process, both in the case of apo HST and HST in the presence of the three types of Fh-NPs. Molecular docking studies revealed that Fh binds with a low affinity to HST (Ka = 9.17 × 103 M−1) in accord with the fluorescence results, where the interaction between simple Fh-NPs and HST was described by a binding constant of 9.54 × 103 M−1.
Collapse
Affiliation(s)
- Claudia G. Chilom
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str Atomistilor 405, CP MG 11, RO-077125 Măgurele, Romania; (N.S.); (S.I.)
- Correspondence:
| | - Nicoleta Sandu
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str Atomistilor 405, CP MG 11, RO-077125 Măgurele, Romania; (N.S.); (S.I.)
| | - Sorina Iftimie
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str Atomistilor 405, CP MG 11, RO-077125 Măgurele, Romania; (N.S.); (S.I.)
| | - Maria Bălăşoiu
- Joint Institute for Nuclear Research, Joliot-Curie No. 6, 141980 Dubna, Russia; (M.B.); (A.R.); (O.O.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Măgurele, Romania
- Moscow Institute of Physics and Technology, Institutskiy Per. No. 9, 141701 Dolgoprudniy, Russia
| | - Andrey Rogachev
- Joint Institute for Nuclear Research, Joliot-Curie No. 6, 141980 Dubna, Russia; (M.B.); (A.R.); (O.O.)
- Moscow Institute of Physics and Technology, Institutskiy Per. No. 9, 141701 Dolgoprudniy, Russia
| | - Oleg Orelovich
- Joint Institute for Nuclear Research, Joliot-Curie No. 6, 141980 Dubna, Russia; (M.B.); (A.R.); (O.O.)
| | - Sergey Stolyar
- Krasnoyarsk Science Center of the Siberian, Branch of the Russian Academy of Sciences, Akademgorodok St. No. 50, 660036 Krasnoyarsk, Russia;
| |
Collapse
|