1
|
Zhang C, Wu M, Hu S, Shi S, Duan Y, Hu W, Li Y. Label-Free, High-Throughput, Sensitive, and Logical Analysis Using Biomimetic Array Based on Stable Luminescent Copper Nanoclusters and Entropy-Driven Nanomachine. Anal Chem 2023; 95:11978-11987. [PMID: 37494597 DOI: 10.1021/acs.analchem.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of an array for high-throughput and logical analysis of biomarkers is significant for disease diagnosis. DNA-templated copper nanoclusters (CuNCs) have a strong potential to serve as a label-free photoluminescence source in array platforms, but their luminescent stability and sensitivity need to be improved. Herein, we report a facile, sensitive, and robust biomimetic array assay by integrating with stable luminescent CuNCs and entropy-driven nanomachine (EDN). In this strategy, the luminescent stability of CuNCs was improved by adding fructose in CuNCs synthesis to offer a reliable label-free signal. Meanwhile, the DNA template for CuNCs synthesis was introduced into EDN with excellent signal amplification ability, in which the reaction triggered by target miRNA would cause the blunt/protruding conformation change of 3'-terminus accompanied by the production or loss of luminescence. In addition, a biomimetic array fabricated by photonic crystals (PCs) physically enhanced the emitted luminescent signal of CuNCs and achieved high-throughput signal readout by a microplate reader. The proposed assay can isothermally detect as low as 4.5 pM of miR-21. Moreover, the logical EDN was constructed to achieve logical analysis of multiple miRNAs by "AND" or "OR" logic gate operation. Therefore, the proposed assay has the advantages of label-free property, high sensitivity, flexible design, and high-throughput analysis, which provides ideas for developing a new generation of facile and smart platforms in the fields of biological analysis and clinical application.
Collapse
Affiliation(s)
- Chuyan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shaorui Shi
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Wenchuang Hu
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Xu B, Gong P, Zhang Y, Wang Y, Tao D, Fu L, Khazalwa EM, Liu H, Zhao S, Zhang X, Xie S. A one-tube rapid visual CRISPR assay for the field detection of Japanese encephalitis virus. Virus Res 2022; 319:198869. [PMID: 35842016 DOI: 10.1016/j.virusres.2022.198869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/26/2022]
Abstract
Early and rapid detection of Japanese encephalitis virus (JEV) is necessary for timely preventive and control measures. However, JEV RNA detection remains challenging due to the low level of viremia. In this study, a RApid VIsual CRISPR (RAVI-CRISPR) assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and CRISPR/Cas12a targeting was developed for easy detection of JEV in the field. We showed successful detection of 8.97 or more copies of the C gene sequence of JEV RNA within approximately 60 min. This assay also displayed no cross-reactivity with other porcine pathogens. We applied our one-tube RAVI-CRISPR assay to 18 brain tissue sample for JE diagnosis. The results from both fluorescence intensity measurements and directly naked-eye visualization were consistent with those from real-time PCR analysis. Taken together, our results showed that one-tube RAVI-CRISPR assay is robust, convenient, sensitive, specific, affordable, and potentially adaptable to on-site detection or surveillance of JEV in clinical and vector samples.
Collapse
Affiliation(s)
- Bingrong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430208, PR China
| | - Yi Zhang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan 430208, PR China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dagang Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lanting Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China
| | - Xuying Zhang
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, Hannover 30559, Germany.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Xu F, Qiao Z, Luo L, He X, Lei Y, Tang J, Shi H, Wang K. A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 2022; 243:123323. [PMID: 35247818 DOI: 10.1016/j.talanta.2022.123323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Herein, based on a terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly-T-templated-copper nanoparticles (poly T-CuNPs) strategy, a simple, universal and label-free fluorescent biosensor for the detection of miRNA was constructed by employing graphene oxide (GO) and DNase I. In this strategy, GO and DNase I were used as a switch and amplifier of the signal generation pathway, respectively, and the fluorescence of poly T-CuNPs was used as the signal output. In the presence of target miRNA, the DNA dissociated from the GO surface by forming a miRNA/DNA duplex and was degraded by DNase I. The short oligos with 3'-OH, the product of DNase I degradation, could be recognized by the TdT and added to a long poly-T tail. Finally, the fluorescence signal was output through the synthesis of poly T-CuNPs. As a proof of concept, let-7a was analyzed. The method showed good sensitivity and selectivity with a linear response in the 50 pM-10,000 pM let-7a concentration range and a 30 pM limit of detection (LOD = 30 pM, R2 = 0.9954, the relative standard deviation were 2.79%-5.30%). It was also successfully applied to the determination of miRNA in spiked human serum samples. It showed good linearity in the range of 500-10000 pM (R2 = 0.9969, the relative standard deviation were 1.61%-3.85%). Moreover, both the adsorption of GO and the degradation of DNase I are DNA sequence-independent; thus, this method can be applied to the detection of any miRNA simply by changing the assisted-DNA sequence.
Collapse
Affiliation(s)
- Fengzhou Xu
- Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Lan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|