1
|
He J, Spanolios E, Froehlich CE, Wouters CL, Haynes CL. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sens 2023; 8:1391-1403. [PMID: 36940263 DOI: 10.1021/acssensors.3c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Neurotransmitters act as chemical messengers, determining human physiological and psychological function, and abnormal levels of neurotransmitters are related to conditions such as Parkinson's and Alzheimer's disease. Biologically and clinically relevant concentrations of neurotransmitters are usually very low (nM), so electrochemical and electronic sensors for neurotransmitter detection play an important role in achieving sensitive and selective detection. Additionally, these sensors have the distinct advantage to potentially be wireless, miniaturized, and multichannel, providing remarkable opportunities for implantable, long-term sensing capabilities unachievable by spectroscopic or chromatographic detection methods. In this article, we will focus on advances in the development and characterization of electrochemical and electronic sensors for neurotransmitters during the last five years, identifying how the field is progressing as well as critical knowledge gaps for sensor researchers.
Collapse
|
2
|
Fan L, Du B, Pei F, Hu W, Guo A, Xie Z, Liu B, Tong Z, Mu X, Tan W. Surface Plasmon Resonance Sensor Based on Core-Shell Fe 3O 4@SiO 2@Au Nanoparticles Amplification Effect for Detection of T-2 Toxin. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063078. [PMID: 36991789 PMCID: PMC10055945 DOI: 10.3390/s23063078] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
In this paper, a core-shell based on the Fe3O4@SiO2@Au nanoparticle amplification technique for a surface plasmon resonance (SPR) sensor is proposed. Fe3O4@SiO2@AuNPs were used not only to amplify SPR signals, but also to rapidly separate and enrich T-2 toxin via an external magnetic field. We detected T-2 toxin using the direct competition method in order to evaluate the amplification effect of Fe3O4@SiO2@AuNPs. A T-2 toxin-protein conjugate (T2-OVA) immobilized on the surface of 3-mercaptopropionic acid-modified sensing film competed with T-2 toxin to combine with the T-2 toxin antibody-Fe3O4@SiO2@AuNPs conjugates (mAb-Fe3O4@SiO2@AuNPs) as signal amplification elements. With the decrease in T-2 toxin concentration, the SPR signal gradually increased. In other words, the SPR response was inversely proportional to T-2 toxin. The results showed that there was a good linear relationship in the range of 1 ng/mL~100 ng/mL, and the limit of detection was 0.57 ng/mL. This work also provides a new possibility to improve the sensitivity of SPR biosensors in the detection of small molecules and in disease diagnosis.
Collapse
Affiliation(s)
- Lirui Fan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Aijiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zihao Xie
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenyuan Tan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
3
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Mitsushio M, Miyahara A, Yoshidome T, Nakatake S. Development of a multi-functional SPR sensing system using a square glass rod with two gold-deposited adjacent faces. ANAL SCI 2023; 39:601-606. [PMID: 36694042 DOI: 10.1007/s44211-023-00275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
A multi-functional sensing system based on surface plasmon resonance (SPR) phenomenon using a square glass rod with two gold-deposited adjacent faces was developed in this work. This sensor system consists of a unpolarized light-emitting diode, a gold-deposited square glass rod, a polarizing beam splitter, and two photodiodes. The SPR responses of two adjacent faces are independently and simultaneously measured with a polarizing beam splitter and two PDs. The response property of the gold-deposited face was confirmed using methanol solutions of ethylene glycol. The response curve of the sensor of the 45 nm gold-deposited face was compared with the theoretical curve calculated using multi-layer Fresnel equations. It was confirmed that the experimental curve is similar to the theoretical one. An evaluation was carried out on the square glass rod, which has an unmodified face and Teflon AF2400 coated gold-deposited face as multi-functional sensor. It was confirmed that this sensor can simultaneously measure the ethanol concentration in the glucose mix solution and refractive index of the sample from the calibration curve. Since this sensor can measure multiple components simultaneously, expected applications to various fields include medical diagnosis, food analysis, and environmental monitoring.
Collapse
Affiliation(s)
- Masaru Mitsushio
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan.
| | - Akihiro Miyahara
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Toshifumi Yoshidome
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Sadafumi Nakatake
- Kagoshima University Southern Kyushu and Nansei Islands Innovation Center, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
5
|
Eddin FBK, Fen YW, Liew JYC, Daniyal WMEMM. Plasmonic Refractive Index Sensor Enhanced with Chitosan/Au Bilayer Thin Film for Dopamine Detection. BIOSENSORS 2022; 12:1124. [PMID: 36551091 PMCID: PMC9775628 DOI: 10.3390/bios12121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Surface plasmonic sensors have received considerable attention, found extensive applications, and outperformed conventional optical sensors. In this work, biopolymer chitosan (CS) was used to prepare the bilayer structure (CS/Au) of a plasmonic refractive index sensor for dopamine (DA) detection. The sensing characteristics of the developed plasmonic sensor were evaluated. Increasing DA concentrations significantly shifted the SPR dips. The sensor exhibited stability and a refractive index sensitivity of 8.850°/RIU in the linear range 0.1 nM to 1 µM with a detection limit of 0.007 nM and affinity constant of 1.383 × 108 M-1. The refractive index and thickness of the CS/Au structure were measured simultaneously by fitting the obtained experimental findings to theoretical data based on Fresnel equations. The fitting yielded the refractive index values n (1.5350 ± 0.0001) and k (0.0150 ± 0.0001) for the CS layer contacting 0.1 nM of DA, and the thickness, d was (15.00 ± 0.01) nm. Then, both n and d values increased by increasing DA concentrations. In addition, the changes in the FTIR spectrum and the variations in sensor surface roughness and structure obtained by AFM analysis confirmed DA adsorption on the sensing layer. Based on these observations, CS/Au bilayer has enhanced the performance of this plasmonic sensor, which showed promising importance as a simple, low-cost, and reliable platform for DA sensing.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | |
Collapse
|
6
|
Abrantes M, Rodrigues D, Domingues T, Nemala SS, Monteiro P, Borme J, Alpuim P, Jacinto L. Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays. J Nanobiotechnology 2022; 20:495. [DOI: 10.1186/s12951-022-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
AbstractDetecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Collapse
|
7
|
Revanappa SK, Soni I, Siddalinganahalli M, Jayaprakash GK, Flores-Moreno R, Bananakere Nanjegowda C. A Fukui Analysis of an Arginine-Modified Carbon Surface for the Electrochemical Sensing of Dopamine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6337. [PMID: 36143660 PMCID: PMC9506051 DOI: 10.3390/ma15186337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Amino acid-modified carbon interfaces have huge applications in developing electrochemical sensing applications. Earlier reports suggested that the amine group of amino acids acted as an oxidation center at the amino acid-modified electrode interface. It was interesting to locate the oxidation centers of amino acids in the presence of guanidine. In the present work, we modeled the arginine-modified carbon interface and utilized frontier molecular orbitals and analytical Fukui functions based on the first principle study computations to analyze arginine-modified CPE (AMCPE) at a molecular level. The frontier molecular orbital and analytical Fukui results suggest that the guanidine (oxidation) and carboxylic acid (reduction) groups of arginine act as additional electron transfer sites on the AMCPE surface. To support the theoretical observations, we prepared the arginine-modified CPE (AMCPE) for the cyclic voltammetric sensing of dopamine (DA). The AMCPE showed excellent performance in detecting DA in blood serum samples.
Collapse
Affiliation(s)
- Santhosh Kumar Revanappa
- Department of Chemistry, University B.D.T. College of Engineering Visvesvaraya Technological University, Davangere 577004, India
| | - Isha Soni
- Laboratory of Quantum Electrochemistry, School of Advacned Chemical Sciences, Shoolini University, Solan 173229, India
| | - Manjappa Siddalinganahalli
- Department of Chemistry, University B.D.T. College of Engineering Visvesvaraya Technological University, Davangere 577004, India
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum Electrochemistry, School of Advacned Chemical Sciences, Shoolini University, Solan 173229, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Roberto Flores-Moreno
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Mexico
| | | |
Collapse
|
8
|
Synthesis of Metal–Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. Int J Mol Sci 2022; 23:ijms23147980. [PMID: 35887328 PMCID: PMC9324456 DOI: 10.3390/ijms23147980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hazardous chemical compounds such as endocrine-disrupting chemicals (EDCs) are widespread and part of the materials we use daily. Among these compounds, bisphenol A (BPA) is the most common endocrine-disrupting chemical and is prevalent due to the chemical raw materials used to manufacture thermoplastic polymers, rigid foams, and industrial coatings. General exposure to endocrine-disrupting chemicals constitutes a serious health hazard, especially to reproductive systems, and can lead to transgenerational diseases in adults due to exposure to these chemicals over several years. Thus, it is necessary to develop sensors for early detection of endocrine-disrupting chemicals. In recent years, the use of metal–organic frameworks (MOFs) as sensors for EDCs has been explored due to their distinctive characteristics, such as wide surface area, outstanding chemical fastness, structural tuneability, gas storage, molecular separation, proton conductivity, and catalyst activity, among others which can be modified to sense hazardous environmental pollutants such as EDCs. In order to improve the versatility of MOFs as sensors, semiconductor quantum dots have been introduced into the MOF pores to form metal–organic frameworks/quantum dots composites. These composites possess a large optical absorption coefficient, low toxicity, direct bandgap, formidable sensing capacity, high resistance to change under light and tunable visual qualities by varying the size and compositions, which make them useful for applications as sensors for probing of dangerous and risky environmental contaminants such as EDCs and more. In this review, we explore various synthetic strategies of (MOFs), quantum dots (QDs), and metal–organic framework quantum dots composites (MOFs@QDs) as efficient compounds for the sensing of ecological pollutants, contaminants, and toxicants such as EDCs. We also summarize various compounds or materials used in the detection of BPA as well as the sensing ability and capability of MOFs, QDs, and MOFs@QDs composites that can be used as sensors for EDCs and BPA.
Collapse
|
9
|
SPR-Based Sensor for the Early Detection or Monitoring of Kidney Problems. Int J Biomater 2022; 2022:9135172. [PMID: 35755268 PMCID: PMC9225913 DOI: 10.1155/2022/9135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
SPR-based technology has emerged as one of the most versatile optical tools for analyzing the binding mechanism of molecular interaction due to its inherent advantages in sensing applications, such as real-time, label-free, and high sensitivity characteristics. SPR is widely used in various fields, including healthcare, environmental management, and food-borne illness analysis. Meanwhile, kidney disease has grown to be one of the world's most serious public health problems in recent decades, resulting in physical degeneration and even death. As a result, several studies have published their findings regarding developing of reliable sensor technology based on the SPR phenomenon. However, an integrated and comprehensive discussion regarding the application of SPR-based sensors for detecting of kidney disease has not yet been found. Therefore, this review will discuss the recent advancements in the development of SPR-based sensors for monitoring kidney-related diseases. Numerous SPR configurations will be discussed, including Kretschmann, Otto, optical fiber-based SPR, and LSPR, which are all used to detect analytes associated with kidney disease, including urea, creatinine, glucose, uric acid, and dopamine. This review aims to show the broad application of SPR sensors which encouraged the development of SPR sensors for kidney problems monitoring.
Collapse
|
10
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
11
|
Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. NANOMATERIALS 2022; 12:nano12111799. [PMID: 35683655 PMCID: PMC9182140 DOI: 10.3390/nano12111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features.
Collapse
|
12
|
Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. PHOTONICS 2022. [DOI: 10.3390/photonics9050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present work, graphene oxide (GO)–polyvinyl alcohol (PVA) composites thin film has been successfully synthesized and prepared by spin coating techniques. Then, the properties and morphology of the samples were characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM). Experimental FTIR results for GO–PVA thin film demonstrated the existence of important functional groups such as -CH2 stretching, C=O stretching, and O–H stretching. Furthermore, UV-Vis analysis indicated that the GO–PVA thin film had the highest absorbance that can be observed at wavelengths ranging from 200 to 500 nm with a band gap of 4.082 eV. The surface morphology of the GO–PVA thin film indicated the thickness increased when in contact with carbaryl. The incorporation of the GO–PVA thin film with an optical method based on the surface plasmon resonance (SPR) phenomenon demonstrated a positive response for the detection of carbaryl pesticide as low as 0.02 ppb. This study has successfully proposed that the GO–PVA thin film has high potential as a polymer nanomaterial-based SPR sensor for pesticide detection.
Collapse
|
13
|
Shukla SK. Century Impact of Macromolecules for Advances of Sensing Sciences. CHEMISTRY AFRICA 2022. [PMCID: PMC8995417 DOI: 10.1007/s42250-022-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impact of macro molecular theory on the progress of sensing sciences and technology has been presented in the light of materials developments, advances in physical and chemical properties. The chronological advances in the properties of macromolecules have significantly improved the sensing performances towards gases, heavy metals, biomolecules, hydrocarbon, and energetic compounds in terms of unexplored sensing parameters, durability, and working lifetime. In this review article, efforts have been made to correlate the advances in structure and interactivity of macro-molecules with their sensing behavior and working performances. The significant findings on the macromolecules towards advancing the sensing sciences are highlighted with the suitable illustration and schemes to establish it as a potential “microanalytical technique” along with existing challenges.
Collapse
|
14
|
Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.
Collapse
|
15
|
Exploration on Structural and Optical Properties of Nanocrystalline Cellulose/Poly(3,4-Ethylenedioxythiophene) Thin Film for Potential Plasmonic Sensing Application. PHOTONICS 2021. [DOI: 10.3390/photonics8100419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are extensive studies on the development of composite solutions involving various types of materials. Therefore, this works aims to incorporate two polymers of nanocrystalline cellulose (NCC) and poly(3,4-ethylenethiophene) (PEDOT) to develop a composite thin film via the spin-coating method. Then, Fourier transform infrared (FTIR) spectroscopy is employed to confirm the functional groups of the NCC/PEDOT thin film. The atomic force microscopy (AFM) results revealed a relatively homogeneous surface with the roughness of the NCC/PEDOT thin film being slightly higher compared with individual thin films. Meanwhile, the ultraviolet/visible (UV/vis) spectrometer evaluated the optical properties of synthesized thin films, where the absorbance peaks can be observed around a wavelength of 220 to 700 nm. An optical band gap of 4.082 eV was obtained for the composite thin film, which is slightly lower as compared with a single material thin film. The NCC/PEDOT thin film was also incorporated into a plasmonic sensor based on the surface plasmon resonance principle to evaluate the potential for sensing mercury ions in an aqueous medium. Resultantly, the NCC/PEDOT thin film shows a positive response in detecting the various concentrations of mercury ions. In conclusion, this work has successfully developed a new sensing layer in fabricating an effective and potential heavy metal ions sensor.
Collapse
|
16
|
Design and Optimization of Surface Plasmon Resonance Spectroscopy for Optical Constant Characterization and Potential Sensing Application: Theoretical and Experimental Approaches. PHOTONICS 2021. [DOI: 10.3390/photonics8090361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The best surface plasmon resonance (SPR) signal can be generated based on several factors that include the excitation wavelength, the type of metal used, and the thickness of the metal layer. In this study, the aforementioned factors have been investigated to obtain the best SPR signal. The excitation wavelength of 633 nm and gold metal with thickness of 50 nm were required to generate the SPR signal before the SPR was used for optical constant characterization by fitting of experimental results to the theoretical data. The employed strategy has good agreement with the theoretical value where the real part refractive index, n value, of the gold thin film was 0.1245 while the value for the imaginary part, k, was 3.6812 with 47.7 nm thickness. Besides that, the optical characterization of nanocrystalline cellulose (NCC)-based thin film has also been demonstrated. The n and k values found for this thin film were 1.4240 and 0.2520, respectively, with optimal thickness of 9.5 nm. Interestingly when the NCC-based thin film was exposed to copper ion solution with n value of 1.3333 and k value of 0.0060 to 0.0070 with various concentrations (0.01–10 ppm), a clear change of the refractive index value was observed. This result suggests that the NCC-based thin film has high potential for copper ion sensing using SPR with a sensitivity of 8.0052°/RIU.
Collapse
|