1
|
Huang Z, Li J, Li LS. Ethylenediamine assist preparation of carbon dots with novel biomass for highly sensitive detection of levodopa. RSC Adv 2025; 15:420-427. [PMID: 39758905 PMCID: PMC11697296 DOI: 10.1039/d4ra08240k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Levodopa (l-Dopa), a precursor drug for dopamine has been widely used to treat Parkinson's disease. However, excess accumulation of l-Dopa in the body may cause movement disorders and uncontrollable emotions. Therefore, it is vital to monitor l-Dopa levels in patients. In this study, a carbon dot (CD)-based fluorescence sensing system was developed for sensitive detection of l-Dopa. The CDs were prepared using a novel biomass, Pandanus amaryllifolius Roxb., as a carbon source via a simple hydrothermal method. Interestingly, it was found that ethylenediamine doping in the preparation system increased the quantum yield of CDs, as well as their fluorescence response sensitivity to l-Dopa. After optimizing the preparation and sensing conditions, the detection limit of l-Dopa decreased from 1.54 μM to 0.05 μM. A complete methodological validation was conducted and the probe was successfully applied to the determination of l-Dopa in fetal bovine serum with excellent precision (RSD ≤ 2.99%) and recoveries of 88.50-99.71%. Overall, this work provides an effective strategy for the regulation of properties of CDs derived from biomass and an innovative method for clinical l-Dopa monitoring.
Collapse
Affiliation(s)
- Zongmei Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University Haikou 570228 China
| | - Jing Li
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts & Science Xiangyang 441021 China
| | - Lu-Shuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University Haikou 570228 China
| |
Collapse
|
2
|
Ni CS, Zhang WJ, Bi WZ, Wu MX, Feng SX, Chen XL, Qu LB. Facile synthesis of N-doped graphene quantum dots as a fluorescent sensor for Cr(vi) and folic acid detection. RSC Adv 2024; 14:26667-26673. [PMID: 39175673 PMCID: PMC11340008 DOI: 10.1039/d4ra05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
The development of stable fluorescent sensors for toxic pollutants and drugs is meaningful to the environment and public health. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were facially synthesized by a one-step hydrothermal method using soluble starch and l-arginine as carbon and nitrogen sources in pure water at 190 °C for 4 h. The as-synthesized N-GQDs were well characterized and displayed blue fluorescence emission at 445 nm with excellent pH stability, salt tolerance, thermostability, photobleaching resistance and reproducibility. Moreover, N-GQDs could serve as an "on-off" sensor for selective detection of Cr(vi) and folic acid with low detection limit (0.80 and 2.1 μM), good linear correlation over wide linear range (0-50 μM and 0-200 μM) as well as short response time (<10 s). The practical applications of N-GQDs for Cr(vi) and folic acid detection in actual samples were further investigated and showed acceptable recoveries (92-105%) with relative standard deviations less than 5%. These results indicated that this N-GQDs-based sensor could be a potential alternative for Cr(vi) and folic acid detection in the fields of environmental monitoring and drug analysis.
Collapse
Affiliation(s)
- Chu-Sen Ni
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
| | - Ming-Xia Wu
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
| | - Su-Xiang Feng
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P. R. China Zhengzhou 450046 China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
3
|
Kayani KF, Rahim MK, Mohammed SJ, Ahmed HR, Mustafa MS, Aziz SB. Recent Progress in Folic Acid Detection Based on Fluorescent Carbon Dots as Sensors: A Review. J Fluoresc 2024:10.1007/s10895-024-03728-3. [PMID: 38625574 DOI: 10.1007/s10895-024-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq.
- Department of Chemistry, College of Science, Charmo University, Chamchamal/Sulaimani, Kurdistan Region, 46023, Iraq.
- Department of Pharmacy, Kurdistan Technical Institute, Sulaymaniyah City, Iraq.
| | - Mohammed K Rahim
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Sewara J Mohammed
- Anesthesia department, College of Health Sciences, Cihan University Sulaimaniya, Sulaimaniya, Kurdistan Region, 46001, Iraq
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| |
Collapse
|
4
|
Liu JZ, Fu YB, Yang N, Wen QL, Sheng Li R, Ling J, Cao Q. Synthesis of a water-stable fluorescence CsPbBr 3 perovskite by dual-supersaturated recrystallization method and tuning the fluorescence spectrum for selective detection of folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123586. [PMID: 37922854 DOI: 10.1016/j.saa.2023.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
As an excellent fluorescent material, cesium lead halide perovskite nanocrystals (PNCs) is rarely used for analytical purposes because the PNCs are unstable in polar solvents, especially water. Developing a new synthesis method to prepare water-stable PNCs makes it promising for the detection of analytes in aqueous solutions. Herein, by using the solubility difference of the precursors in different solvents, we successfully synthesized water-stable CsPbBr3 PNCs by a dual-supersaturated recrystallization method at room temperature. We also found that the fluorescence of the as-prepared CsPbBr3 PNCs could be quenched by some small organic molecules, such as folic acid (FA) and dopamine (DA). By using a chloride-induced anion exchange reaction method, the fluorescence emission peak of the CsPbBr3 PNCs could be tuned from 518 to 418 nm and the emission color changed from green to blue. The blue emission chloride-exchanged PNCs have a good selectivity for only FA and a good linear relationship is established between the fluorescence quenching rate of the PNCs and concentration of FA from 10.0 to 140.0 μM, with a limit of detection (LOD) of 0.9 μM. This work expanded the applications of PNCs in the field of analytical chemistry and also proposed a new strategy for improving selectivity by tuning the emission spectrum of a fluorescent probe.
Collapse
Affiliation(s)
- Jin-Zhou Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yan-Bo Fu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ni Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Yin X, Wei S, Zhai C, Wang B, Zhang H, Wang C, Song X, Sun G, Jiang C. Chiral CDs-based fluorescence sensor for rapid and specific sensing K 4[Fe(CN) 6] in table salt and salted food. Food Chem 2024; 432:137207. [PMID: 37657345 DOI: 10.1016/j.foodchem.2023.137207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Potassium ferricyanide (K4[Fe(CN)6]) as anti-caking agent plays an important role in avoiding the formation of chunks for fine particulate solids. However, inappropriate and excessive addition and decomposition of K4[Fe(CN)6] are detrimental to physical health. At present, appropriate strategies for convenient and accurate analysis of K4[Fe(CN)6] in table salt and pickled food are desirable. Herein, an efficient "ON-OFF-ON" fluorescent sensor based on chiral carbon dots was prepared by a simple one-step hydrothermal method. The chiral CDs with L-Tryptophan and D-Tryptophan as chiral source were named as L-CDs and D-CDs. Notably, the bright fluorescence of L/D-CDs could be effectively quenched by K4[Fe(CN)6] through dynamic quenching mechanism. This fluorescent sensor achieved excellent sensitive and selective detection of K4[Fe(CN)6] with a limit of detection (LOD) of 25.0 ng·mL-1. In addition, the L/D-CDs could be applied not only for selective fluorescent recognition of K4[Fe(CN)6] by the methods of portable filter paper and hydrogels, but also as fluorescent dye for repeated message encryption and decryption.
Collapse
Affiliation(s)
- Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Changyu Zhai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Bin Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xuewei Song
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Chunzhu Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
6
|
Wei S, Liu B, Cui D, Zhang H, Wang C, Yin X, Jiang C, Sun G. Photostable yellow emissive carbon dots for iron-mediated reversible sensing of biothiols and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123364. [PMID: 37703790 DOI: 10.1016/j.saa.2023.123364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The different levels of biothiols in cells can not only screen cancer cells but also play a selective role in killing cancer cells. Therefore, accurate monitoring of biothiol in cancer cells is of great research significance. Herein, novel yellow emission CDs (Y-CDs) were prepared by a simple hydrothermal method using 2, 5-dihydroxyterephthalic acid (DHTA) as precursors. The Y-CDs as a highly efficient dual-mode sensor could detect Fe3+ and biothiols by colorimetric and fluorescence signals. Especially, with the addition of L-Cysteine, the quenched fluorescence could be quickly restored within 2 min and the detection limit was as low as 31.65 nM. Additionally, this sensor was utilized to sense biothiols in actual samples and living cells due to its eminent biocompatibility. Finally, the Y-CDs were successfully applied not only as fluorescent ink for message encryption but also as a portable solid hydrogels sensor for the detection of Fe3+ and biothiols. Therefore, these results suggested that Y-CDs could serve as a promising sensor for Fe3+ and biothiol detection in early cancer screening.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Dongfeng Cui
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chunzhu Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
7
|
Liu P, Ga L, Wang Y, Ai J. Synthesis of Temperature Sensing Nitrogen-Doped Carbon Dots and Their Application in Fluorescent Ink. Molecules 2023; 28:6607. [PMID: 37764383 PMCID: PMC10536200 DOI: 10.3390/molecules28186607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
With the discovery of research, many properties of carbon dots are getting better and better. People have taken advantage of this and utilized them interspersed in various fields. In the present study, water-soluble nitrogen-doped carbon dots (N-CDs) with excellent optical and fluorescence thermal properties were prepared by the hydrothermal method using 4-dimethylaminopyridine and N,N'-methylenebisacrylamide as precursors. Co2+ has a selective bursting effect on the fluorescence of N-CDs. The fluorescence of N-CDs is selectively burst by Co2+, and the high sensitivity is good in the range of 0-12 μM with a detection limit of 74 nM. In addition, the good temperature response (reversible and recoverable fluorescence in the temperature range of 20~90 °C) and excellent optical properties of the N-CDs also make them new potentials in the field of fluorescent inks and temperature sensing.
Collapse
Affiliation(s)
- Pingping Liu
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
8
|
Cui S, Wang B, Zhai C, Wei S, Zhang H, Sun G. A double rare earth doped CD nanoplatform for nanocatalytic/starving-like synergistic therapy with GSH-depletion and enhanced reactive oxygen species generation. J Mater Chem B 2023; 11:7986-7997. [PMID: 37523206 DOI: 10.1039/d3tb00959a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cancer has been one of the principal diseases threatening human health in the world. Traditional chemotherapy, radiotherapy and surgery in clinical applications have some disadvantages, such as inefficiency, low specificity, and serious side effects. Therefore, some emerging synergistic therapies have been developed for more accurate diagnosis and more efficient treatment of cancer. Herein, novel Ce-Gd@CDs-GOx nanozymes were obtained by combining magnetic resonance/fluorescence (MR/FL) imaging and nanocatalytic/starving-like synergistic therapy for tumor tissue imaging and efficient cancer treatment. The as-prepared Ce-Gd@CDs-GOx nanozymes with a diameter of 25.0 ± 0.8 nm exhibited favorable physiological stability, negligible toxicity, bright fluorescence and strong T1-weighted MR imaging (MRI) performance (10.97 mM-1 s-1). Moreover, the nanozymes could not only cut off the nutrient supply of tumor cells, but also generate ROS to synergistically enhance antitumor efficacy. The coexistence of Ce3+/Ce4+ in Ce-Gd@CDs-GOx endowed them with attractive capacity for alleviating hypoxia and enhancing GSH consumption to induce the apoptosis of tumor cells. Furthermore, most of the 4T1 cells treated with Ce-Gd@CDs-GOx nanozymes were damaged in the CCK-8 and Calcein-AM/PI staining assays, indicating the excellent efficiency of intracellular synergistic therapy. In summary, this study offered a promising strategy to design a nanoplatform for MR/FL imaging-guided nanocatalytic and starvation-like synergistic therapy of cancer.
Collapse
Affiliation(s)
- Shufeng Cui
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Bin Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Changyu Zhai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Dong W, Wang L, Zhang R, Wen C, Su R, Gong X, Liang W. High luminescent N,S,P co-doped carbon dots for the fluorescence sensing of extreme acidity and folic acid. Dalton Trans 2023; 52:6551-6558. [PMID: 37185994 DOI: 10.1039/d3dt00560g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carbon dots are popular luminescent materials because of their excellent fluorescence properties, but the low quantum yield limits their application. Heteroatom doping is a more convenient and popular approach to increase the quantum yield of carbon dots. Here, novel N,S,P heteroatom co-doped carbon dots (N,S,P-CDs) were synthesized by a simple one-step hydrothermal method using m-phenylenediamine, L-cysteine and phosphoric acid as raw materials. The as-prepared N,S,P-CDs showed excellent photoluminescence properties with a fluorescence quantum yield of up to 41%, which greatly encourages their application in fluorescence sensing. The N,S,P-CDs exhibited good fluorescence stability under salt solution, xenon lamp irradiation and ultraviolet lamp irradiation except for a high sensitivity to extreme acidity. The fluorescence intensity of the N,S,P-CDs can be decreased by as much as 85% when the pH of the solution changes from 2.50 to 4.75, that is, a small fluctuation in pH can cause an intense response of the fluorescence of the N,S,P-CDs. Therefore, an excellent fluorescence sensing platform for accurately monitoring the pH of extreme acidity has been constructed. In addition, the N,S,P-CDs can be applied for quantitative detection of folic acid based on the strong quenching effect of folic acid on the fluorescence of the N,S,P-CDs. Good linearity was obtained in the concentration range of 4.85-82.45 μM, with a detection limit of 0.148 μM. The constructed sensing platform was used for the determination of folic acid in actual samples of orange juice, oatmeal and tablets with satisfactory results.
Collapse
Affiliation(s)
- Wenjuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Lu Wang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Rongrong Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Chaochao Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Ren Su
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China.
| | - Xiaojuan Gong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Wenting Liang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
10
|
Wang B, Guo L, Yan X, Hou F, Zhong L, Xu H. Dual-mode detection sensor based on nitrogen-doped carbon dots from pine needles for the determination of Fe 3+ and folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121891. [PMID: 36152507 DOI: 10.1016/j.saa.2022.121891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, nitrogen-doped carbon dots (N-CDs) from pine needles were obtained by one-step hydrothermal synthesis without any chemical reagents. The fluorescence quenching and absorbance enhancement of N-CDs occurred when Fe3+ and folic acid (FA) were added. Based on this, the dual-mode detection sensor by fluorescence and ultraviolet-visible (UV-Vis) spectrophotometry for the determination of Fe3+ and FA was established. Detected by the dual-mode detection sensor under the optimized condition, the linear range of Fe3+ was 0.1-540 μM and FA was 0.1-165 μM. At the same time, the two inputs "NOR" and "OR" logic gates are constructed successfully according to the dual-mode sensor signals. The proposed dual-mode detection sensor is simple, efficient and stable; it can be applied to determinate Fe3+ and FA in practical samples successfully and the results are satisfactory.
Collapse
Affiliation(s)
- Bingying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Lijun Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Xiangtong Yan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Faju Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| | - Linlin Zhong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Hui Xu
- Department of Material Chemistry, Huzhou College, Huzhou 313000, PR China.
| |
Collapse
|
11
|
Pundi A, Chang CJ. Recent Advances in Synthesis, Modification, Characterization, and Applications of Carbon Dots. Polymers (Basel) 2022; 14:2153. [PMID: 35683827 PMCID: PMC9183192 DOI: 10.3390/polym14112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Although there is significant progress in the research of carbon dots (CDs), some challenges such as difficulty in large-scale synthesis, complicated purification, low quantum yield, ambiguity in structure-property correlation, electronic structures, and photophysics are still major obstacles that hinder the commercial use of CDs. Recent advances in synthesis, modification, characterization, and applications of CDs are summarized in this review. We illustrate some examples to correlate process parameters, structures, compositions, properties, and performances of CDs-based materials. The advances in the synthesis approach, purification methods, and modification/doping methods for the synthesis of CDs are also presented. Moreover, some examples of the kilogram-scale fabrication of CDs are given. The properties and performance of CDs can be tuned by some synthesis parameters, such as the incubation time and precursor ratio, the laser pulse width, and the average molar mass of the polymeric precursor. Surface passivation also has a significant influence on the particle sizes of CDs. Moreover, some factors affect the properties and performance of CDs, such as the polarity-sensitive fluorescence effect and concentration-dependent multicolor luminescence, together with the size and surface states of CDs. The synchrotron near-edge X-ray absorption fine structure (NEXAFS) test has been proved to be a useful tool to explore the correlation among structural features, photophysics, and emission performance of CDs. Recent advances of CDs in bioimaging, sensing, therapy, energy, fertilizer, separation, security authentication, food packing, flame retardant, and co-catalyst for environmental remediation applications were reviewed in this article. Furthermore, the roles of CDs, doped CDs, and their composites in these applications were also demonstrated.
Collapse
Affiliation(s)
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan;
| |
Collapse
|