1
|
Fu L, Liu Y, Guo J, Zhang X, Li W, Zhao J, Zhen Z, Chen Y. Enthalpy-Driven Interaction between Bovine Serum Albumin and Biomass-Derived Low-Melting Mixture Solvents (LoMMSs) for Efficient and Green Purification of Protein. Biomacromolecules 2025. [PMID: 39781920 DOI: 10.1021/acs.biomac.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs. Here, we for the first time find that eco-friendly biomass-derived LoMMSs could be potentially used for the efficient and green purification of BSA protein by enthalpy-driven interactions. Biomass-derived LoMMSs possess the merits of high biocompatibility, high degradability, high abundance, and low cost. A single high-affinity binding site via hydrogen bonding and van der Waals forces is observed between BSA and LoMMSs by fluorescence and thermodynamic analysis. Experimental results from circular dichroism and infrared spectra demonstrate that the addition of LoMMSs stabilizes the secondary structure of the BSA protein. This work provides a valuable indication for the design of eco-friendly and cost-effective LoMMSs for the purification of protein.
Collapse
Affiliation(s)
- Li Fu
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Ya Liu
- Department of Pharmacy, Langfang Health Vocational College, Langfang, Hebei 065001, P.R. China
| | - Jingjing Guo
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Xueqing Zhang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Wenqiang Li
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Jiayue Zhao
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Ziying Zhen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Yu Chen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| |
Collapse
|
2
|
Kang Z, Xue M, Miao H, Wang W, Ding X, Yin MM, Hu YJ. Structure-activity relationship between gold nanoclusters and human serum albumin: Effects of ligand isomerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124598. [PMID: 38850819 DOI: 10.1016/j.saa.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The interactions between gold nanoclusters (AuNCs) and proteins have been extensively investigated. Nevertheless, the structure-activity relationship between gold nanoclusters and proteins in terms of ligand isomerization remained unclear. Here, interactions between Au25NCs modified with para-, inter- and ortho-mercaptobenzoic acid (p/m/o-MBA-Au25NCs) and human serum albumin (HSA) were analyzed. The results of the multispectral approach showed that all three gold nanoclusters bound to the site I in dynamic modes to increase the stability of HSA. There were significant differences in the binding intensity, thermodynamic parameters, main driving forces, and binding ratios between these three gold nanoclusters and HSA, which might be related to the existence forms of the three ligands on the surface of AuNCs. Due to the different polarities of AuNCs themselves, the impact of three AuNCs on the microenvironment of amino acid residues in HSA was also different. It could be seen that ligand isomerization significantly affected the interactions between gold nanoclusters and proteins. This work will provide theoretical guidance for ligand selection and biological applications of metal nanoclusters.
Collapse
Affiliation(s)
- Zhuo Kang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Meng Xue
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Hu Miao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wen Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
3
|
Li SC, Xu H, Wang PF, Wang LM, Du YR, Guan YB, Han ZX, Zhang QB. The mechanism of interaction between tri-para-cresyl phosphate and human serum protein: A multispectroscopic and in-silico study. Chem Biol Interact 2024; 400:111144. [PMID: 39002877 DOI: 10.1016/j.cbi.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease in the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452 kJ/mol, -25.907 kJ/mol, -27.363 kJ/mol, and - 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 60.83 kJ/mol and 291.08 J/(mol·>k), respectively, indicating that hydrophobic force was the major driving force in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OPFRs in humans.
Collapse
Affiliation(s)
- Shang-Chun Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Han Xu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Peng-Fei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Li-Mei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China; People's Hospital of Chongqing Hechuan, Chongqing, 401519, China
| | - Yue-Rou Du
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yong-Bin Guan
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhi-Xia Han
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Qing-Bi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Han W, Yang Y, Zhang H, Qiao H, Zhang Y, Zhang Z, Wang J. Interaction of different chloro-substituted phenylurea herbicides (diuron and chlortoluron) with bovine serum albumin: Insights from multispectral study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124338. [PMID: 38678839 DOI: 10.1016/j.saa.2024.124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
In this work, the interaction between different chloro-substituted phenylurea herbicides (diuron (DIU) and chlortoluron (CHL)) and BSA were investigated and compared at three different temperatures (283 K, 298 K and 310 K) adopting UV-vis, fluorescence, and circular dichroism spectra. The quenching mechanism of the interaction was also proposed. The energy transfer between BSA and DIU/CHL was investigated. The binding sites of DIU/CHL and BSA and the variations in the microenvironment of amino acid residues were studied. The changes of the secondary structure of BSA were analyzed. The results indicate that both DIU and CHL can significantly interact with BSA, and the degree of the interaction between DIU/CHL and BSA increases with the increase of the DIU/CHL concentration. The fluorescence quenching of BSA by DIU/CHL results from the combination of static and dynamic quenching. The DIU/CHL has a weak to moderate binding affinity for BSA, and the binding stoichiometry is 1:1. Their binding processes are spontaneous, and hydrophobic interaction, hydrogen bonds and van der Waals forces are the main interaction forces. DIU/CHL has higher affinity for subdomain IIA (Site I) of BSA than subdomain IIIA (Site II), and also interacts with tryptophan more than tyrosine residues. The energy transfer can occur from BSA to DIU/CHL. By comparison, the strength of the interaction of DIU-BSA is always greater than that of CHL-BSA, and DIU can destroy the secondary structure of BSA molecules greater than CHL and thus the potential toxicity of DIU is higher due to DIU with more chlorine substituents than CHL. It is expected that this study on the interaction can offer in-depth insights into the toxicity of phenylurea herbicides, as well as their impact on human and animal health at the molecular level.
Collapse
Affiliation(s)
- Wenhui Han
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Ying Yang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Honglu Zhang
- School of Environment, Liaoning University, Shenyang 110036, China
| | - Heng Qiao
- Qingdao ECH Testing Limited Company, Qingdao 266109, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhaohong Zhang
- School of Environment, Liaoning University, Shenyang 110036, China.
| | - Jun Wang
- School of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
5
|
Gupta R, Paul K. Investigating the Serum Albumin Binding Behavior of Naphthalimide Based Fluorophore Conjugates: Spectroscopic and Molecular Docking Approach. ChemMedChem 2024; 19:e202400114. [PMID: 38676621 DOI: 10.1002/cmdc.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
In the present study, naphthalimide-pyrazole-benzothiazole based fluorescent analogs were synthesized by substituting different primary and secondary amines on the naphthalimide nucleus and were evaluated for their sensitivity and selectivity towards serum albumin. Among various synthesized analogues compound 25 showed the most significant change with serum albumin and was further studied for selective detection and mode of interaction with serum albumin. Here, we compared the binding interaction of fluorescent probe 25 for variation/detection of two 76 % structurally resembling proteins HSA and BSA, by spectroscopic experiments. The compound shows more selectivity for HSA and BSA with a higher binding constant and evident visible change in the emission spectra of two serum albumins among different bioanalytes. The mode of interaction of 25 with human serum albumin and bovine serum albumin was investigated by FT-IR, circular dichroism, and DLS techniques to find out the change in the microenvironment and variation in the structure of serum albumin proteins. Higher binding affinity and specific selectivity of 25 with a limit of detection of 0.69 μM and 1.4 μM towards HSA and BSA compared to other bioanalytes make it a significant fluorescent probe for quantitatively detecting serum albumins at the very early stage of many fatal diseases.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| |
Collapse
|
6
|
Yang H, Ji X, Wang H, Yang R, Ma J. Mechanism understanding of PIKfyve inhibitor YM201636 with human serum albumin: Insights from molecular modeling and multiple spectroscopic techniques. LUMINESCENCE 2024; 39:e4838. [PMID: 39051537 DOI: 10.1002/bio.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
YM201636 is the potent PIKfyve inhibitor that is being actively investigated for liver cancer efficacy. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism between YM201636 and the transport protein HSA. Results indicated that YM201636 is stably bound between the subdomains IIA and IIIA of HSA, supported by site marker displacement experiments. YM201636 quenched the endogenous fluorescence of HSA by static quenching since a decrease in quenching constants was observed from 7.74 to 2.39 × 104 M-1. UV-vis and time-resolved fluorescence spectroscopy confirmed the YM201636-HSA complex formation and this binding followed a static mechanism. Thermodynamic parameters ΔG, ΔH, and ΔS obtained negative values suggesting the binding was a spontaneous process driven by Van der Waals interactions and hydrogen binding. Binding constants ranged between 5.71 and 0.33 × 104 M-1, which demonstrated a moderately strong affinity of YM201636 to HSA. CD, synchronous, and 3D fluorescence spectroscopy revealed that YM201636 showed a slight change in secondary structure. The increase of Kapp and a decrease of PSH with YM201636 addition showed that YM201636 changed the surface hydrophobicity of HSA. The research provides reasonable models helping us further understand the transportation and distribution of YM201636 when it absorbs into the blood circulatory system.
Collapse
Affiliation(s)
- Hongqin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xinzhu Ji
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Huiling Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ruijing Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Junyi Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
7
|
Duan X, Liu W, Liang J, Jing T, Liu Y, Wang X, Liu B. Modulation of protein-ligand interactions in the presence of ZIF-8: Spectroscopy and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124053. [PMID: 38422930 DOI: 10.1016/j.saa.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this paper, we investigated the protein-ligand interactions in the presence of ZIF-8 using multi-spectroscopic approaches and molecular dynamics simulation. Fluorescence experiments and molecular docking results showed that ZIF-8 did not change the type of quenching and interaction force between ciprofloxacin (CIP) and human serum albumin (HSA), but made the binding constant of HSA-CIP to be smaller, suggesting that ZIF-8 maybe accelerate the dissociation of CIP from HSA-CIP complex. Moreover, the effect of ZIF-8 on the physiological function of HSA was explored. Multi-spectroscopic methods revealed that ZIF-8 did not significantly alter the microenvironment of amino acid groups, but cause a slight decrease in the content of α-helical conformation, and a sparse and flexible structure of the protein backbone. These peculiarities might lead to the diminution of HSA's ability to control drugs. In short, ZIF-8 might enhance drug effect due to affecting the binding of drugs to proteins. However, the present study is only a preliminary investigation of the suitability of ZIF-8 as a drug carrier in vitro, and subsequent in vivo experimental studies will be required to further confirm the idea.
Collapse
Affiliation(s)
- Xinyue Duan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Jiaqi Liang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Tingyu Jing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110075, China.
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
8
|
Pani BSUL, Chandrasekaran N. Adsorption of clarithromycin on polystyrene nanoplastics surface and its combined adverse effect on serum albumin. Colloids Surf B Biointerfaces 2024; 234:113673. [PMID: 38086277 DOI: 10.1016/j.colsurfb.2023.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/09/2024]
Abstract
Emerging contaminants, such as antibiotics and nanoplastics, have garnered significant attention due to their potential adverse effects on diverse ecosystems. Antibiotic adsorption on the surface of nanoplastics potentially facilitates their long-range transport, leading to the synergistic effects of the complex. This research aims to examine the adsorption behavior of clarithromycin binding with polystyrene nanoplastics surface as well as their interaction between drug adsorbed polystyrene nanoplastics with serum albumin. Different spectroscopic methods were used to find out the interaction between clarithromycin and nanoplastics, under stimulated physiological conditions UV-vis spectroscopy showed a maximum of 22.8% percentage of the drug adsorbed with the polystyrene nanoplastics surface after 6 h of incubation. The fluorescence spectroscopic results demonstrated that the fluorescence intensity of serum albumin was quenched by the clarithromycin-polystyrene nanoplastics (CLA-PSNP) complex through static quenching. We calculated the number of binding stoichiometry, binding constants, and thermodynamic parameters. This study revealed that the CLA-PSNP binds to serum albumin spontaneously and its hydrophobic interactions played a significant role. The conformational changes in the structure of serum albumin were revealed from the findings of synchronous fluorescence spectra, CD spectra, and 3D fluorescence spectra, leading to the disturbance in functional activity. This study focuses valuable insights into the intermolecular interactions between clarithromycin-adsorbed polystyrene nanoplastics and serum albumin and its potential molecular-level biological toxicity.
Collapse
|
9
|
Li Z, Chen R, Qin C, Lu P, Lin J, Zheng W, Xiong Y, Li C. Assessment of the Binding of Pseudallecin A to Human Serum Albumin with Multi-Spectroscopic Analysis, Molecular Docking and Molecular Dynamic Simulation. Chem Biodivers 2023; 20:e202301217. [PMID: 37870539 DOI: 10.1002/cbdv.202301217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
The binding of pseudallecin A (PA), a potential antibiotic with strong inhibitory activities against Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus, to human serum albumin (HSA) was explored. The interaction between them was assessed by multi-spectroscopic analysis, binding site competitive analysis, molecular docking and molecular dynamic simulation, showing the results as follows: PA effectively quenched the innate fluorescence of HSA by a static quenching process, formed a complex at a molar ratio of approximately 1 : 1 and performed an effective non-radiative energy transfer; the binding of PA to HSA was a spontaneous exothermic reaction driven by enthalpy with strong affinity and had a slight effect on the conformation of HSA; PA bound at site III of HSA and hydrogen bonds were the major binding forces to maintain the stability of the PA-HSA complex. Molecular dynamic simulation was performed to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radius of gyration (Rg) for this complex and effectively supported the spectroscopic outcome. These results meant that the delivery and distribution of PA as a water-insoluble molecule can be efficiently accomplished via HSA in human blood and, it has a good potential for future drug application and pharmacological development.
Collapse
Affiliation(s)
- Ziyang Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Ruolan Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Chan Qin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Peijun Lu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Jiaru Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Yahong Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Chunyuan Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| |
Collapse
|
10
|
Rajendran D, Chandrasekaran N. Unveiling the Modification of Esterase-like Activity of Serum Albumin by Nanoplastics and Their Cocontaminants. ACS OMEGA 2023; 8:43719-43731. [PMID: 38027364 PMCID: PMC10666218 DOI: 10.1021/acsomega.3c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
Nanoplastics and other cocontaminants have raised concerns due to their widespread presence in the environment and their potential to enter the food chain. The harmful effects of these particles depend on various factors, such as nanoparticle size, shape, surface charge, and the nature of the cocontaminants involved. On entering the human body, human serum albumin (HSA) molecules bind and transport these particles in the blood system. The esterase-like activity of HSA, which plays a role in metabolizing drug/toxic compounds, was taken as a representative to portray the effects of these particles on HSA. Polystyrene nanoplastics (PSNPs) with different surface functionalization (plain (PS), amine (PS-NH2), and carboxy (PS-COOH)), different sizes (100 and 500 nm), and PS with cocontaminant metformin hydrochloride (Met-HCl), a widely used antidiabetic drug, were investigated in this study. Fluorescence emission spectra of HSA revealed that PS-NH2 exhibits a greater effect on protein conformation, smaller NPs have a greater influence on protein structure than larger NPs, and Met-HCl lowers PSNPs' affinity for HSA by coating the surface of the NPs, which may result in direct NP distribution to the drug's target organs and toxicity. Circular dichroism spectra also supported these results in terms of secondary structural changes. Esterase activity of HSA was inhibited by all the particles (except Met-HCl) by competitive inhibition as concluded from constant Vmax and increasing Km. Greater reduction in enzyme activity was observed for PS-NH2 among functionalizations and for 100 nm PS among sizes. Furthermore, Met-HCl lowers the inhibitory impact of PSNPs on HSA since the drug binds weakly to HSA, and so they can serve as a vector delivering PSNPs to their target organs, resulting in serious implications.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT University), Vellore 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT University), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
11
|
Li X, Yan X, Yang D, Chen S, Yuan H. Probing the Interaction between Isoflucypram Fungicides and Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations. Int J Mol Sci 2023; 24:12521. [PMID: 37569896 PMCID: PMC10420152 DOI: 10.3390/ijms241512521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
To better understand the potential toxicity risks of isoflucypram in humans, The interaction between isoflucypram and HSA (human serum albumin) was studied through molecular docking, molecular dynamics simulations, ultraviolet-visible absorption, fluorescence, synchronous fluorescence, three-dimensional fluorescence, Fourier transform infrared spectroscopies, and circular dichroism spectroscopies. The interaction details were studied using the molecular docking method and molecular dynamics simulation method. The results revealed that the effect of isoflucypram on human serum albumin was mixed (static and dynamic) quenching. Additionally, we were able to obtain important information on the number of binding sites, binding constants, and binding distance. The interaction between isoflucypram and human serum albumin occurred mainly through hydrogen bonds and van der Waals forces. Spectroscopic results showed that isoflucypram caused conformational changes in HSA (human serum albumin), in which the α-helix was transformed into a β-turn, β-sheet, and random coil, causing the HSA structure to loosen. By providing new insights into the mechanism of binding between isoflucypram and human serum albumin, our study has important implications for assessing the potential toxicity risks associated with isoflucypram exposure.
Collapse
Affiliation(s)
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.C.)
| | | | | | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (S.C.)
| |
Collapse
|
12
|
Song J, Chen M, Meng F, Chen J, Wang Z, Zhang Y, Cui J, Wang J, Shi D. Studies on the interaction mechanism between xanthine oxidase and osmundacetone: Molecular docking, multi-spectroscopy and dynamical simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122861. [PMID: 37209475 DOI: 10.1016/j.saa.2023.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Xanthine oxidase (XO) is a key enzyme in uric acid production, and its molybdopterin (Mo-Pt) domain is an important catalytic center when xanthine and hypoxanthine are oxidated. It is found that the extract of Inonotus obliquus has an inhibitory effect on XO. In this study, five key chemical compounds were initially identified using liquid chromatography-mass spectrometry (LC-MS), and two compounds, osmundacetone ((3E)-4-(3,4-dihydroxyphenyl)-3-buten-2-one) and protocatechuic aldehyde (3,4-dihydroxybenzaldehyde), were screened as the XO inhibitors by ultrafiltration technology. Osmundacetone bound XO strongly and competitively inhibited XO with a half-maximal inhibitory concentration of 129.08 ± 1.71 μM, and its inhibition mechanism, was investigated. Osmundacetone and XO via static quenching and spontaneously bound with XO with high affinity, primarily via hydrophobic interactions and hydrogen bonds. Molecular docking studies showed that osmundacetone was inserted into the Mo-Pt center and interacted with hydrophobic residues of Phe911, Gly913, Phe914, Ser1008, Phe1009, Thr1010, Val1011, and Ala1079 of XO. In summary, these findings suggest that provide theoretical basis for the research and development of XO inhibitors from Inonotus obliquus.
Collapse
Affiliation(s)
- Jiling Song
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Minghui Chen
- The College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Fanlei Meng
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jiahui Chen
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhanwei Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Zhang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; Nanguan Middle School, Honghua Gang District, Zunyi 563000, China
| | - Jing Cui
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| | - Jing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China.
| | - Dongfang Shi
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
13
|
Liu XY, Du SC, Jiang FL, Jiang P, Liu Y. Regulation mechanism of human insulin fibrillation by L-lysine carbon dots: low concentration accelerates but high concentration inhibits the fibrillation process. Phys Chem Chem Phys 2023; 25:13542-13549. [PMID: 37133393 DOI: 10.1039/d3cp01083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fibrillation process of human insulin (HI) is closely related to the therapy for type II diabetes (T2D). Due to changes in the spatial structure of HI, the fibrillation process of HI takes place in the body, which leads to a significant decrease in normal insulin levels. L-Lysine CDs with a size of around 5 nm were synthesized and used to adjust and control the fibrillation process of HI. ThT fluorescence analysis and transmission electron microscopy (TEM) characterization of the CDs showed the role of HI fibrillation from the perspective of the kinetics of HI fibrillation and regulation. Isothermal titration calorimetry (ITC) was used to explore the regulatory mechanism of CDs at all stages of HI fibrillation from the perspective of thermodynamics. Contrary to common sense, when the concentration of CDs is less than 1/50 of the HI, CDs will promote the growth of fibres, while a high concentration of CDs will inhibit the growth of fibres. The experimental results of ITC clearly prove that different concentrations of CDs will correspond to different pathways of the combination between CDs and HI. CDs have a strong ability to combine with HI during the lag time, and the degree of combination has become the main factor influencing the fibrillation process.
Collapse
Affiliation(s)
- Xing-Yu Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Shuai-Chen Du
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- Hubei Jiangxia Laboratory, Wuhan 430023, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
14
|
Chen J, Bian X, Zhang S, Yang G. Study on the interaction of two quinazoline derivatives as novel PI3K/mTOR dual inhibitors and anticancer agents to human serum albumin utilizing spectroscopy and docking. LUMINESCENCE 2023; 38:260-268. [PMID: 36648974 DOI: 10.1002/bio.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Interactions of human serum albumin (HSA) with two structurally similar quinazoline derivatives, S1 and S2 , which are potential anticancer drugs acting on PI3K/mTOR targets, were investigated in vitro utilizing multiple spectroscopy as well as molecular docking. The fluorescence quenching study demonstrated that HSA fluorescence could be statically quenched by S1 and S2 through the formation of an HSA-drug complex. Furthermore, the details of the binding site number, binding constant, as well as the thermodynamic parameters, were estimated at 298, 303, and 310 K. The results revealed that hydrogen bond interactions, as well as van der Waals forces, were the predominant factors responsible for binding HSA to S1 or S2 . Synchronous fluorescence and ultraviolet (UV) absorption spectra suggested that S1 and S2 had little effect on the polarity of the microenvironment and conformation of HSA. Energy transfer from HSA to S1 or S2 most probably occurred. The docking study revealed that S1 and S2 were able to bind to the hydrophobic cavity that was located in the HSA subdomain IIA and formed varying numbers of hydrogen bonds with amino acid residues nearby. Due to the subtle difference in the chemical structure, the binding of S1 and S2 to HSA was slightly different.
Collapse
Affiliation(s)
- Jiangang Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaoli Bian
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Sanqi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
15
|
Xiao Q, Tu X, Cao H, Luo H, Li B, Liu J, Liu Y, Huang S. Interaction thermodynamics investigation of bovine serum albumin with black phosphorus quantum dots via spectroscopic and molecular simulation techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
16
|
Zhang Y, Zhao W, Xing Z, Zhu B, Hou R, Zhang J, Li T, Zhang Z, Wang H, Li Z. Study on the binding behavior and functional properties of soybean protein isolate and β-carotene. Front Nutr 2022; 9:984490. [PMID: 36159458 PMCID: PMC9493324 DOI: 10.3389/fnut.2022.984490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study focused on the non-covalent interaction between soybean protein isolate (SPI) and β-carotene (BC). The conformational changes of SPI with β-carotene in varying proportions (BC/SPI: 2%, 4%, 6%, 8%, and 10%) were investigated by multi-spectroscopy and molecular docking. Results showed that the quenching mode is static quenching and binding affinity increased with temperature. The stoichiometry was 1:1, indicating there was only one binding site in SPI. The binding was based on entropy and primarily driven by hydrophobic interactions and its binding constant was in the order of 104 L⋅mol–1. The addition of the β-carotene affected the secondary structure of SPI resulting in an increase in α-Helix and a decrease in random coil and β-turn content, indicating protein aggregated and hydrophobic interactions occurred. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) verified that no new larger molecular weight substance was formed and no covalent interaction existed. Molecular docking corroborated that electrostatic and hydrophobic interactions were both involved in the formation of complexes, where hydrophobic interaction was the dominant one. Moreover, β-carotene improved 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, foaming capacity, and emulsifying stability of SPI. These findings provide useful information about the interaction mechanism of SPI and β-carotene, which contributes to the further development and application of SPI products rich in β-carotene in the food industry.
Collapse
Affiliation(s)
- Yating Zhang
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yating Zhang,
| | - Wenqi Zhao
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhuqing Xing
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyang Hou
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junxi Zhang
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Taoran Li
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zifan Zhang
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- College of Healthy Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Zheng Li,
| |
Collapse
|
17
|
Li Y, Tan H, Zhou H, Guo T, Zhou Y, Zhang Y, Liu X, Ma L. Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy. Toxins (Basel) 2022; 14:toxins14090604. [PMID: 36136542 PMCID: PMC9501389 DOI: 10.3390/toxins14090604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
α-zearalenol (α-ZOL) is a mycotoxin with a strong estrogen effect that affects the synthesis and secretion of sex hormones and is transported to target organs through human serum albumin (HSA). Additionally, it has been reported that curcumin can also bind to HSA with high affinity at the same binding site as α-ZOL. Additionally, several studies reported that reducing the bound fraction of α-ZOL contributes to speeding up the elimination rate of α-ZOL to reduce its hazard to organs. Therefore, to explore the influence of a nutrition intervention with curcumin on α-ZOL effects, the competitive displacement of α-ZOL from HSA by curcumin was investigated using spectroscopic techniques, ultrafiltration techniques and HPLC methods. Results show that curcumin and α-ZOL share the same binding site (subdomain IIA) on HSA, and curcumin binds to HSA with a binding constant of 1.12 × 105 M−1, which is higher than that of α-ZOL (3.98 × 104 M−1). Ultrafiltration studies demonstrated that curcumin could displace α-ZOL from HSA to reduce α-ZOL’s binding fraction. Synchronous fluorescence spectroscopy revealed that curcumin could reduce the hydrophobicity of the microenvironment of an HSA–α-ZOL complex. This study is of great significance for applying curcumin and other highly active foodborne components to interfere with the toxicokinetics of α-ZOL and reduce its risk of its exposure.
Collapse
Affiliation(s)
- Yifang Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China
| | - Xiaozhu Liu
- Foshan Micro Miracles Biotechnology Company, Foshan 528000, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China
- Correspondence: or ; Tel.: +86-1310-1282-977
| |
Collapse
|
18
|
PI3K/mTOR Dual Inhibitor Pictilisib Stably Binds to Site I of Human Serum Albumin as Observed by Computer Simulation, Multispectroscopic, and Microscopic Studies. Molecules 2022; 27:molecules27165071. [PMID: 36014303 PMCID: PMC9413508 DOI: 10.3390/molecules27165071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Pictilisib (GDC-0941) is a well-known dual inhibitor of class I PI3K and mTOR and is presently undergoing phase 2 clinical trials for cancer treatment. The present work investigated the dynamic behaviors and interaction mechanism between GDC-0941 and human serum albumin (HSA). Molecular docking and MD trajectory analyses revealed that GDC-0941 bound to HSA and that the binding site was positioned in subdomain IIA at Sudlow’s site I of HSA. The fluorescence intensity of HSA was strongly quenched by GDC-0941, and results showed that the HSA–GDC-0941 interaction was a static process caused by ground-state complex formation. The association constant of the HSA–GDC-0941 complex was approximately 105 M−1, reflecting moderate affinity. Thermodynamic analysis conclusions were identical with MD simulation results, which revealed that van der Waals interactions were the vital forces involved in the binding process. CD, synchronous, and 3D fluorescence spectroscopic results revealed that GDC-0941 induced the structural change in HSA. Moreover, the conformational change of HSA affected its molecular sizes, as evidenced by AFM. This work provides a useful research strategy for exploring the interaction of GDC-0941 with HSA, thus helping in the understanding of the transport and delivery of dual inhibitors in the blood circulation system.
Collapse
|
19
|
Han X, Sun J, Niu T, Mao B, Gao S, Zhao P, Sun L. Molecular Insight into the Binding of Astilbin with Human Serum Albumin and Its Effect on Antioxidant Characteristics of Astilbin. Molecules 2022; 27:molecules27144487. [PMID: 35889360 PMCID: PMC9321622 DOI: 10.3390/molecules27144487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Astilbin is a dihydroflavonol glycoside identified in many natural plants and functional food with promising biological activities which is used as an antioxidant in the pharmaceutical and food fields. This work investigated the interaction between astilbin and human serum albumin (HSA) and their effects on the antioxidant activity of astilbin by multi-spectroscopic and molecular modeling studies. The experimental results show that astilbin quenches the fluorescence emission of HSA through a static quenching mechanism. Astilbin and HSA prefer to bind at the Site Ⅰ position, which is mainly maintained by electrostatic force, hydrophobic and hydrogen bonding interactions. Multi-spectroscopic and MD results indicate that the secondary structure of HSA could be changed because of the interaction of astilbin with HSA. DPPH radical scavenging assay shows that the presence of HSA reduces the antioxidant capacity of astilbin. The explication of astilbin–HSA binding mechanism will provide insights into clinical use and resource development of astilbin in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiangyu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
| | - Jing Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianmei Niu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
| | - Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
| | - Shijie Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
- Correspondence: (P.Z.); (L.S.)
| | - Linlin Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.H.); (J.S.); (T.N.); (B.M.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Correspondence: (P.Z.); (L.S.)
| |
Collapse
|
20
|
Rajendran D, Chandrasekaran N, Waychal Y, Mukherjee A. Nanoplastics alter the conformation and activity of human serum albumin. NANOIMPACT 2022; 27:100412. [PMID: 35934234 DOI: 10.1016/j.impact.2022.100412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics finds its presence in most of the consumer products. Their chance of coming in contact with human cells and components is rampant. This study focuses on the interaction of polystyrene nanoplastics (PSNPs) with human serum albumin (HSA), ultimately causing structural and functional properties of the protein. Fluorescence and UV-Visible spectroscopic studies reported that PSNPs form a spontaneous ground-state complex with HSA, by hydrogen bonding, van der waal's, and hydrophobic force of attraction. This causes changes in the environment around major aromatic amino acids, especially tryptophan-214, which has a strong affinity with PSNPs. Further docking analysis confirmed hydrophobic interactions between PSNPs and aromatic amino acids in subdomain IIA of HSA. A shift in amide bands in HSA, as determined by FTIR analysis confirmed the disturbances in its secondary structure followed by reordering which will lead to the unfolding of HSA. Besides, PSNPs reduce the esterase activity of HSA by competitive inhibition. This molecular-level information such as binding energy, binding site, binding forces, reversible or irreversible binding, and structural changes of protein will shed light on the extent of toxicity in humans. This study will emphasize the urgent need for regulation of the use of nanoplastics (NPs) in consumer products, as well as the need for more research to determine the fate of NPs in the biological system.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Yojana Waychal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|