1
|
Zheng Y, Chen T, Gao Y, Chen H. Counterion influence on near-infrared-II heptamethine cyanine salts for photothermal therapy. Bioorg Chem 2024; 145:107206. [PMID: 38367428 DOI: 10.1016/j.bioorg.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Photothermal therapy (PTT) has attracted extensive attention in cancer treatment. Heptamethine cyanine dyes with near-infrared (NIR) absorption performance have been investigated for PTT. However, they are often accompanied by poor photostability, suboptimal photothermal conversion and limited therapeutic efficacy. The photophysical properties of fluorescent organic salts can be tuned through counterion pairing. However, whether the counterion can influence the photostability and photothermal properties of heptamethine cyanine salts has not been clarified. In this work, we investigated the effects of eleven counter anions on the physical and photothermal properties of NIR-II heptamethine cyanine salts with the same heptamethine cyanine cation. The anions have great impacts on the physiochemical properties of dyes in solution including aggregation, photostability and photothermal conversion efficiency. The physical tuning enables the control over the cytotoxicity and phototoxicity of the dyes. The selected salts have been demonstrated to significantly suppress 4T1 breast tumor growth with low toxicity. The findings that the counterion has great effects on the photothermal properties of cationic NIR-II heptamethine cyanine dyes will provide a reference for the preparation of improved photothermal agents through counterion pairing with possible translation to humans.
Collapse
Affiliation(s)
- Yilin Zheng
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Tingyan Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
2
|
Zhang S, Qu Y, Zhang D, Li S, Tang F, Ding A, Hu L, Zhang J, Wang H, Huang K, Li L. Rational Design and Biological Application of Hybrid Fluorophores. Chemistry 2024; 30:e202303208. [PMID: 38038726 DOI: 10.1002/chem.202303208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Fluorophores are considered powerful tools for not only enabling the visualization of cell structures, substructures, and biological processes, but also making for the quantitative and qualitative measurement of various analytes in living systems. However, most fluorophores do not meet the diverse requirements for biological applications in terms of their photophysical and biological properties. Hybridization is an important strategy in molecular engineering that provides fluorophores with complementarity and multifunctionality. This review summarizes the basic strategies of hybridization with four classes of fluorophores, including xanthene, cyanine, coumarin, and BODIPY with a focus on their structure-property relationship (SPR) and biological applications. This review aims to provide rational hybrid ideas for expanding the reservoir of knowledge regarding fluorophores and promoting the development of newly produced fluorophores for applications in the field of life sciences.
Collapse
Affiliation(s)
- Shiji Zhang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yunwei Qu
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Duoteng Zhang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Shuai Li
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Fang Tang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Jin Zhang
- Technical Center of Xiamen Customs, Xiamen, 361001, China
| | - Hui Wang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Lin Li
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| |
Collapse
|
3
|
Cai Z, Yu J, Hu J, Sun K, Liu M, Gu D, Chen J, Xu Y, He X, Wei W, Wang Z, Sun B. Three near-infrared and lysosome-targeting probes for photodynamic therapy (PDT). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122027. [PMID: 36323089 DOI: 10.1016/j.saa.2022.122027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Lysosome, an organelle which contains a number of hydrolases and hydrogen ions, plays a crucial role in cellular survival and apoptosis. If selectively destroy lysosomes membrane, inner hydrolases and hydrogen ions will leak and induce cell death. In this work, three lysosome-targeting fluorescent probes (HCL 1-3, heptamethine cyanine lysosomal-targeting probe) were designed, synthesized and developed for photodynamic therapy. Piperazine and N, N-dimethyl structures made HCL 1-3 have good lysosome targeting ability while Pearson's correlation coefficients reached 0.85, 0.87 and 0.78. It can be concluded from MTT test, HCL 1-3 have high photo cytotoxicity and low dark cytotoxicity from MTT test. Calcein/PI staining assays also supported cytotoxicity of HCL 1-3 under light conditions. In vivo experiments, HCL 2 accumulated in tumor and a strong fluorescence signal was observed at 12 h post injection. All results showed that our experiments provide help and new ideas for cyanine dyes in cancer treatment.
Collapse
Affiliation(s)
- Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yang Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zining Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
4
|
Medeiros NG, Braga CA, Câmara VS, Duarte RC, Rodembusch FS. Near‐infrared fluorophores based on heptamethine cyanine dyes: from their synthesis and photophysical properties to recent optical sensing and bioimaging applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natália G Medeiros
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Cláudia A. Braga
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Viktor S Câmara
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Rodrigo C Duarte
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Fabiano Severo Rodembusch
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Gonçalves 9500Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| |
Collapse
|