1
|
Jin H, Kong F, Li X, Shen J. Artificial intelligence in microplastic detection and pollution control. ENVIRONMENTAL RESEARCH 2024; 262:119812. [PMID: 39155042 DOI: 10.1016/j.envres.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The rising prevalence of microplastics (MPs) in various ecosystems has increased the demand for advanced detection and mitigation strategies. This review examines the integration of artificial intelligence (AI) with environmental science to improve microplastic detection. Focusing on image processing, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and hyperspectral imaging (HSI), the review highlights how AI enhances the efficiency and accuracy of these techniques. AI-driven image processing automates the identification and quantification of MPs, significantly reducing the need for manual analysis. FTIR and Raman spectroscopy accurately distinguish MP types by analyzing their unique spectral features, while HSI captures extensive spatial and spectral data, facilitating detection in complex environmental matrices. Furthermore, AI algorithms integrate data from these methods, enabling real-time monitoring, traceability prediction, and pollution hotspot identification. The synergy between AI and spectral imaging technologies represents a transformative approach to environmental monitoring and emphasizes the need to adopt innovative tools for protecting ecosystem health.
Collapse
Affiliation(s)
- Hui Jin
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Fanhao Kong
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Abimbola I, McAfee M, Creedon L, Gharbia S. In-situ detection of microplastics in the aquatic environment: A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173111. [PMID: 38740219 DOI: 10.1016/j.scitotenv.2024.173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics are ubiquitous in the aquatic environment and have emerged as a significant environmental issue due to their potential impacts on human health and the ecosystem. Current laboratory-based microplastic detection methods suffer from various drawbacks, including a lack of standardisation, limited spatial and temporal coverage, high costs, and time-consuming procedures. Consequently, there is a need for the development of in-situ techniques to detect and monitor microplastics to effectively identify and understand their sources, pathways, and behaviours. Herein, we adopt a systematic literature review method to assess the development and application of experimental and field technologies designed for the in-situ detection and monitoring of aquatic microplastics, without the need for sample preparation. Four scientific databases were searched in March 2023, resulting in a review of 62 relevant studies. These studies were classified into seven sensor categories and their working principles were discussed. The sensor classes include optical devices, digital holography, Raman spectroscopy, other spectroscopy, hyperspectral imaging, remote sensing, and other methods. We also looked at how data from these technologies are integrated with machine learning models to develop classifiers capable of accurately characterising the physical and chemical properties of microplastics and discriminating them from other particles. This review concluded that in-situ detection of microplastics in aquatic environments is feasible and can be achieved with high accuracy, even though the methods are still in the early stages of development. Nonetheless, further research is still needed to enhance the in-situ detection of microplastics. This includes exploring the possibility of combining various detection methods and developing robust machine-learning classifiers. Additionally, there is a recommendation for in-situ implementation of the reviewed methods to assess their effectiveness in detecting microplastics and identify their limitations.
Collapse
Affiliation(s)
- Ismaila Abimbola
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland.
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Leo Creedon
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Salem Gharbia
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
3
|
Li F, Song N, Li X, Jirigalantu, Mi X, Sun C, Sun Y, Feng S, Wang G, Qiu J, Bayanheshig. Detection of microplastics via a confocal-microscope spatial-heterodyne Raman spectrometer with echelle gratings. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124099. [PMID: 38513421 DOI: 10.1016/j.saa.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Microplastic pollution has become a global environmental problem that cannot be ignored. Raman spectroscopy has been widely used for microplastics detection because it can be performed in real-time and is non-destructive. Conventional detection techniques have had weak signals and low signal-to-noise ratios (SNR). Here, an efficient and reliable detection method is demonstrated. Specifically, a confocal microscope combined with an echelle-grating spatial-heterodyne Raman spectrometer (CM-ESHRS) was constructed. The confocal microscopy and the characteristics of the echelle grating enabled high optical throughput, high SNR, high spectral resolution, and a wide spectral detection band. After spectral calibration, the resolution approached 0.67 cm-1, moreover, the spectral detection range for a single order was 1372.16 cm-1. We detected and analyzed nineteen kinds of microplastics, such as polyamide, polypropylene, and polymethylmethacrylate, and the main vibrational spectral bands were categorized. Compared with commercial dispersive spectrometers, CM-ESHRS has a higher optical throughput. In addition, we examined microplastics with various particle sizes, microplastics mixed in flour, and microplastic particles of different materials under mixed conditions, all of which yielded complete spectral information. Overall, CM-ESHRS exhibits good potential applications for the detection of microplastics.
Collapse
Affiliation(s)
- Fuguan Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China.
| | - Nan Song
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China.
| | - Xiaotian Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| | - Jirigalantu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| | - Xiaotao Mi
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| | - Ci Sun
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| | - Yuqi Sun
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China.
| | - Shulong Feng
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| | - Geng Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| | - Jun Qiu
- The Institute for Al International Governance of Tsinghua University, Beijing 100084, China.
| | - Bayanheshig
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center for Diffraction Gratings Manufacturing and Application, Changchun, Jilin 130033, China
| |
Collapse
|
4
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y, Yang H, Zhao F. Silver nanostars arrayed on GO/MWCNT composite membranes for enrichment and SERS detection of polystyrene nanoplastics in water. WATER RESEARCH 2024; 255:121444. [PMID: 38492312 DOI: 10.1016/j.watres.2024.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Nanoplastic water contamination has become a critical environmental issue, highlighting the need for rapid and sensitive detection of nanoplastics. In this study, we aimed to prepare a graphene oxide (GO)/multiwalled carbon nanotube (MWCNT)-silver nanostar (AgNS) multifunctional membrane using a simple vacuum filtration method for the enrichment and surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics in water. AgNSs, selected for the size and shape of nanoplastics, have numerous exposed Raman hotspots on their surface, which exert a strong electromagnetic enhancement effect. AgNSs were filter-arrayed on GO/MWCNT composite membranes with excellent enrichment ability and chemical enhancement effects, resulting in the high sensitivity of GO/MWCNT-AgNS membranes. When the water samples flowed through the portable filtration device with GO/MWCNT-AgNS membranes, PS nanoplastics could be effectively enriched, and the retention rate for 50 nm PS nanoplastics was 97.1 %. Utilizing the strong SERS effect of the GO/MWCNT-AgNS membrane, we successfully detected PS nanoparticles with particle size in the range of 50-1000 nm and a minimum detection concentration of 5 × 10-5 mg/mL. In addition, we detected 50, 100, and 200 nm PS nanoplastics at concentrations as low as 5 × 10-5 mg/mL in real water samples using spiking experiments. These results indicate that the GO/MWCNT-AgNS membranes paired with a portable filtration device and Raman spectrometer can effectively enrich and rapidly detect PS nanoplastics in water, which has great potential for on-site sensitive water quality safety evaluation.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Haolin Yang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Fenyu Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| |
Collapse
|
5
|
Yao J, Li J, Qi J, Wan M, Tang L, Han H, Tian K, Liu S. Distribution patterns and environmental risk assessments of microplastics in the lake waters and sediments from eight typical wetland parks in Changsha city, China. Front Public Health 2024; 12:1365906. [PMID: 38784569 PMCID: PMC11112001 DOI: 10.3389/fpubh.2024.1365906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The quality of water in urban parks is closely related to people's daily lives, but the pollution caused by microplastics in park water and sediments has not been comprehensively studied. Therefore, eight typical parks in the urban area of Changsha, China, were selected, and Raman spectroscopy was used to explore the spatial distributions and compositions of the microplastics in the water and sediments, analyze their influencing factors, and evaluate their environmental risks. The results showed that the abundances of surface water microplastics in all parks ranged from 150 to 525 n L-1, and the abundances of sediment microplastics ranged from 120 to 585 n kg-1. The microplastics in the surface water included polyethylene terephthalate (PET), chlorinated polyethylene (CPE), and fluororubber (FLU), while those in the sediments included polyvinyl chloride (PVC), wp-acrylate copolymer (ACR), and CPE. Regression analyses revealed significant positive correlations between human activities and the abundances of microplastics in the parks. Among them, the correlations of population, industrial discharge and domestic wastewater discharge with the abundance of microplastics in park water were the strongest. However, the correlations of car flow and tourists with the abundance of microplastics in park water were the weakest. Based on the potential ecological risk indices (PERI) classification assessment method, the levels of microplastics in the waters and sediments of the eight parks were all within the II-level risk zone (53-8,549), among which the risk indices for Meixi Lake and Yudai Lake were within the IV risk zone (1,365-8,549), which may have been caused by the high population density near the park. This study provides new insights into the characteristics of microplastics in urban park water and sediment.
Collapse
Affiliation(s)
- Junyi Yao
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jiang Li
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jialing Qi
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Mengrui Wan
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Liling Tang
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Hui Han
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Kai Tian
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Shaobo Liu
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| |
Collapse
|
6
|
Wang Y, Zhao J, Fu Z, Guan D, Zhang D, Zhang H, Zhang Q, Xie J, Sun Y, Wang D. Innovative overview of the occurrence, aging characteristics, and ecological toxicity of microplastics in environmental media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123623. [PMID: 38387545 DOI: 10.1016/j.envpol.2024.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.
Collapse
Affiliation(s)
- Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China.
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, PR China
| | - Jingliang Xie
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
7
|
Issaka E, Yakubu S, Sulemana H, Kerkula A, Nyame-do Aniagyei O. Current status of the direct detection of MPs in environments and implications for toxicology effects. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|