1
|
Huang Y, Liu Y, Fu N, Huang Q, Zhang H. Advances in the synthesis and properties of sulfur quantum dots for food safety detection and antibacterial applications. Food Chem 2025; 463:141055. [PMID: 39236382 DOI: 10.1016/j.foodchem.2024.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Food safety is closely related to human health and has become a worldwide, pressing concern. Food safety analysis is essential for ensuring food safety. Sulfur quantum dots (SQDs), a new type of zero-dimensional metal-free nanomaterials, have recently become the focus of scientific research due to their good luminescence properties, dispersibility, biocompatibility, and inherent antibacterial properties. This review focuses on recent advances in SQDs, with emphasis on their practical applications in the food field. First, commonly used methods for the synthesis of SQDs are presented, including traditional and emerging strategies. The properties of SQDs are then analyzed in detail, particularly their luminescence properties, catalytic activities, and reducing properties. Next, the use of SQDs in food safety detection and antibacterial fields are elaborated. Finally, this review discusses the challenges associated with the use of SQDs in food safety detection and antimicrobial applications.
Collapse
Affiliation(s)
- Yihong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yujia Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Ning Fu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Hanqiang Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Salari R, Amjadi M. An efficient chemiluminescent probe based on Ni-doped CsPbBr 3 perovskite nanocrystals embedded in mesoporous SiO 2 for sensitive assay of L-cysteine. Sci Rep 2024; 14:20871. [PMID: 39242591 PMCID: PMC11379696 DOI: 10.1038/s41598-024-70624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
This study presents an efficient chemiluminescence (CL) probe based on perovskite nanocrystals (NCs) for detection of L-cysteine (L-Cys). It consists of nickel-doped CsPbBr3 NCs embedded in the mesoporous SiO2 matrix as CL reagent and cerium (IV) as an oxidant in aqueous environment. The probe was designed for the highly selective determination of L-Cys based on its remarkable enhancing effect on the CL intensity. The colloidal nanocomposite of nickel-doped CsPbBr3 NCs@SiO2 with photoluminescence quantum yield of 58% was fabricated by ligand-assisted re-precipitation method and characterized by using UV-Vis absorption, FT-IR, X-ray diffraction, and transmission electron microscopy. The sensor was utilized to determine L-Cys in the linear concentration range of 20-300 nM with a detection limit of 12.8 nM. Direct chemical oxidation of Ni-doped CsPbBr3 NCs@SiO2 by Ce(IV) was the single cause of the formation of the excited-state NCs and subsequent production of CL. The developed probe provides outstanding selectivity towards L-Cys over structurally related compounds. Accurate determination of L-Cys in human serum samples was achieved without interference, and the results were confirmed by HPLC method.
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
3
|
Salari R, Amjadi M, Hallaj T. A smartphone-assisted fluorescent sensing platform for ochratoxin A using Mn-doped CsPbBr 3 perovskite quantum dots embedded in the mesoporous silica as a ratiometric probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124083. [PMID: 38428214 DOI: 10.1016/j.saa.2024.124083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Food sources are susceptible to contamination with ochratoxin A (OTA), which is a serious threat to human health. Thus, the construction of novel, simple sensing platforms for OTA monitoring is of utmost need. Manganese-doped lead halide perovskite quantum dots encapsulated with mesoporous SiO2 (Mn-CsPbBr3 QDs@SiO2) were prepared here and used as a ratiometric fluorescent probe for OTA. Mn-CsPbBr3 QDs, synthesized at room temperature, exhibit dual emission with maximum wavelengths of 440 and 570 nm and, when embedded in the SiO2 layer, produce a stable and robust photoluminescence signal. By adding OTA to the probe, emission at 440 nm increases while emission at 570 nm decreases, so a ratiometric response is obtained. Experimental variables affecting the probe signal were studied and optimized and the mechanism of sensing was discussed. This ratiometric sensor demonstrated excellent selectivity and low detection limit (4.1 ng/ml) as well as a wide linear range from 5.0 to 250 ng/ml for OTA. A simple portable smartphone-based device was also constructed and applied for the fluorescence assay. With different OTA concentrations, the multicolor transition from pink to blue under a UV lamp led to simple visual and smartphone-assisted sensing of OTA by using a color analyzing application. Satisfactory recoveries in black tea, coffee, moldy fig and flour samples confirmed the reliability of the assay. The accuracy of the probe was proved by comparison of the results with high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| |
Collapse
|
4
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
5
|
Nazeer N, Gurjar V, Ratre P, Dewangan R, Zaidi K, Tiwari R, Soni N, Bhargava A, Mishra PK. Cardiovascular disease risk assessment through sensing the circulating microbiome with perovskite quantum dots leveraging deep learning models for bacterial species selection. Mikrochim Acta 2024; 191:255. [PMID: 38594377 DOI: 10.1007/s00604-024-06343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.
Collapse
Affiliation(s)
- Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Vikas Gurjar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Rakhi Dewangan
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Kaniz Zaidi
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Rajnarayan Tiwari
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Arpit Bhargava
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
- Faculty of Science, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India.
| |
Collapse
|
6
|
Iranifam M, Royan M, Golshani P, Hassanpour-Khaneghah M, Al Lawati HAJ. FeS 2 nanosheets-luminol-O 2 chemiluminescence method for determination of venlafaxine hydrochloride, imipramine hydrochloride, and cefazolin sodium. LUMINESCENCE 2024; 39:e4745. [PMID: 38644416 DOI: 10.1002/bio.4745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Maryam Royan
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Pariya Golshani
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Mahdiyeh Hassanpour-Khaneghah
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Shellaiah M, Lin WL, Raghunath P, Sun KW, Lin MC. Investigation on broadband emission of two-dimensional melamine lead iodide perovskite (2D-C 3H 8N 6PbI 4): An experimental and theoretical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123186. [PMID: 37499471 DOI: 10.1016/j.saa.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Novel two-dimensional melamine lead iodide perovskite (2D-C3H8N6PbI4) is synthesized to investigate its crystallinity, optical band gap and broadband emission properties and to make comparisons with 2D-C3H8N6PbCl4/2D-C3H8N6PbBr4 perovskites. Both experimental and density functional theory (DFT) interrogations on 2D-C3H8N6PbX4 (X = Cl, Br and I) are conducted. The crystal structure, morphology and percentile of Pb and halide elements are confirmed using scanning electron microscope (SEM), and energy dispersive spectrum (EDS), powder/single crystal X-ray diffraction (PXRD/SXRD), DFT and X-ray crystallography simulations. The optical band gaps of 2D-C3H8N6PbX4 perovskites are determined from the Tauc plot fitting of absorbance and DFT studies. Distinct broadband emission of 2D-C3H8N6PbX4 perovskites between 300 and 800 nm is observed, which can be fitted with multiple Gaussian distributions. The fittings of broad PL spectra from 2D-C3H8N6PbCl4/2D-C3H8N6PbBr4 perovskites confirm the involvement of both Dexter energy transfer from melamine cation and self-trapped excitons (STEs). However, the broadband emission of 2D-C3H8N6PbI4 is attributed only to the Dexter energy transfer from melamine cation and the absence of STEs is attributed to the larger lattice deformation of 2D-C3H8N6PbI4. Moreover, the involvement of spin-orbit coupling (SOC) in the energy transfer is clarified to attest that the broadband emission of 2D-C3H8N6PbI4 is distinct among its halide family.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Li Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Putikam Raghunath
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Ming-Chang Lin
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
9
|
Zhao W, Zhang J, Kong F, Ye T. Application of Perovskite Nanocrystals as Fluorescent Probes in the Detection of Agriculture- and Food-Related Hazardous Substances. Polymers (Basel) 2023; 15:2873. [PMID: 37447518 DOI: 10.3390/polym15132873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Halide perovskite nanocrystals (PNCs) are a new kind of luminescent material for fluorescent probes. Compared with traditional nanosized luminescent materials, PNCs have better optical properties, such as high fluorescence quantum yield, tunable band gap, low size dependence, narrow emission bandwidth, and so on. Therefore, they have broad application prospects as fluorescent probes in the detection of agriculture- and food-related hazardous substances. In this paper, the structure and basic properties of PNCs are briefly described. The water stabilization methods, such as polymer surface coating, ion doping, surface passivation, etc.; are summarized. The recent advances of PNCs such as fluorescent probes for detecting hazardous substances in the field of agricultural and food are reviewed, and the detection effect and mechanism are discussed and analyzed. Finally, the problems and solutions faced by PNCs as fluorescent probes in agriculture and food were summarized and prospected. It is expected to provide a reference for further application of PNCs as fluorescent probes in agriculture and food.
Collapse
Affiliation(s)
- Wei Zhao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Fanjun Kong
- Harbin Technician College, Harbin 150500, China
| | - Tengling Ye
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Zhao L, Cao X, Jang X, Zhang Y, Shang B, Sun Z, Zhan Y. One-pot synthesis of nitrogen-doped carbonized polymer dots with tunable emission for multicolor light-emitting diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122815. [PMID: 37196549 DOI: 10.1016/j.saa.2023.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Carbonized polymer dots (CPDs) have highly potential application value in the field of optoelectronic devices due to their preferable stability, excellent optical properties and low cost. Here, the nitrogen-doped carbonized polymer dots (HNCDs) with self-quenching-resistant fluorescence were prepared via a simple solvothermal method with citric acid, urea and 2-hydroxyethyl methacrylate (HEMA) as raw materials. The structure and optical properties of the HNCDs have been explored in detail by various contrast experiments. The results show that HEMA form the poly(HEMA) to modify on the surface of carbonized core, which can overcome the quenching effect of carbonized core. The nitrogen doping is crucial for the red shift emission of solid-state HNCDs. Furthermore, the HNCDs exhibit concentration-dependent emission and excellent compatibility with silicone sol, which lead to their emission red shifted from blue to red with increasing concentration. The HNCDs were further applied to construct the light-emitting diodes (LEDs), and the multicolor LEDs ranging from blue to red can be prepared by simply varying the type of chips and adjusting the concentration of HNCDs in encapsulating material.
Collapse
Affiliation(s)
- Liuxi Zhao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiyue Cao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xuanfeng Jang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Bin Shang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Zhengguang Sun
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yuan Zhan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Applications of nanomaterial-based chemiluminescence sensors in environmental analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|