1
|
Xia P, Wu S, Ji J, Su H, Zhang M, An S, Zeng D. A novel dual-site fluorescent probe for the one-step detection of Cys and SO 2 in living cells. Anal Chim Acta 2024; 1329:343227. [PMID: 39396292 DOI: 10.1016/j.aca.2024.343227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Cysteine (Cys) is the major intracellular thiol and plays a key role in human pathology. Furthermore, endogenous sulfur dioxide (SO2) is produced in mammals. Abnormal levels of SO2 are commonly associated with a variety of respiratory, cardiovascular, and neurological diseases. Therefore, given their important role in life activities, it is significant to construct a fluorescent probe that can detection between Cys and SO2. RESULTS We have designed and synthesized a two-site fluorescent probe CUM with coumarin derivative and benzaldehyde molecules, which can detect and differentiate between Cys and SO2 through dual excitation wavelengths. Its carbon-carbon double bond reacts with Cys and undergoes a nucleophilic reaction, emitting green fluorescence at 520 nm, while SO32- reacts with benzaldehyde molecules in the probe CUM and undergoes a blue fluorescence at 460 nm. SO32- reacts with the benzaldehyde molecule of probe CUM and fluoresces blue at 460 nm. Thus, the probe CUM with two reaction sites can distinguish between Cys and SO2 and shows good selectivity and fast reaction speed. In addition, we successfully utilized probe CUM to image Cys and SO2 in human breast cancer cells (MDA-MB-231). SIGNIFICANCE This work provides an effective method for the molecular design of coumarin-based fluorescent probes. Probe CUM as a promising and reliable tool for the meticulous discrimination and quantification of Cys and SO2 in diverse biological matrices, thereby opening up new avenues for various biological systems.
Collapse
Affiliation(s)
- Pengpeng Xia
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Shuya An
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
2
|
Gao Y, Guo L, Liu X, Chen N, Yang X, Zhang Q. Advances in the synthesis and applications of macrocyclic polyamines. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231979. [PMID: 39092147 PMCID: PMC11293801 DOI: 10.1098/rsos.231979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.
Collapse
Affiliation(s)
- Yongguang Gao
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Lina Guo
- Tangshan First Vocational Secondary Specialized School, Tangshan 063000, People’s Republic of China
| | - Xinhua Liu
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Na Chen
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Xiaochun Yang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Qing Zhang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| |
Collapse
|
3
|
Yang YH, Zhang Z, Bao QL, Zhao F, Yang MK, Tao X, Chen Y, Zhang JT, Yang LJ. Designing and preparing supramolecular encapsulation systems based on fraxetin and cyclodextrins for highly selective detection of nicotine. Carbohydr Polym 2024; 327:121624. [PMID: 38171652 DOI: 10.1016/j.carbpol.2023.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
Herein, a series of water-soluble supramolecular inclusion complexes (ICs) probes were prepared using cyclodextrins (CDs) and fraxetin (FRA) to detect nicotine (NT) with high selectivity in vitro and in vivo. The FRA/CD ICs prepared through the saturated solution method exhibited excellent water solubility, stability, and biocompatibility. A clear host-guest inclusion model was provided by the theoretical calculations. The investigation revealed that NT was able to enter into the cavities of FRA/β-CD IC and FRA/γ-CD IC, and further formed charge transfer complexes with FRA in the CD cavities, resulting in a rapid and highly selective fluorescence-enhanced response with the lowest detection limits of 1.9 × 10-6 M and 9.7 × 10-7 M, and the linear response ranged from 0.02 to 0.3 mM and 0.01-0.05 mM, respectively. The IC probes showed good anti-interference performance to common interferents or different pH environments, with satisfactory reproducibility and repeatability of response to NT. Furthermore, the potentiality of the probes was confirmed through fluorescence imaging experiments using human lung cancer cells and the lung tissue of mice. This study offers a fresh perspective for detecting NT in environmental and biomedical analysis.
Collapse
Affiliation(s)
- Yun-Han Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, PR China; Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, PR China
| | - Qiu-Lian Bao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Fang Zhao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Ming-Kun Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xin Tao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yan Chen
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Jun-Tong Zhang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Li-Juan Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
4
|
Gao Z, Yang H, Ran L, Zhang D, Ren Y, Wang F, Ren J, Wang E. Water-Soluble Dual-Channel Fluorescent Probe for Sensitive Detection of Biothiols In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2023; 6:5828-5835. [PMID: 38055907 DOI: 10.1021/acsabm.3c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Benefiting from high spatiotemporal resolution, deep tissue penetration, and excellent sensitivity, fluorescence imaging technology has been widely applied in cancer diagnosis and treatment. In recent years, a large number of fluorescent probes for monitoring the levels of endogenous biothiols have been reported, which have significant implications for cancer diagnosis and treatment. However, most probes still suffer from poor biological compatibility and easy attachment by the environment. This work presents the development of a water-soluble dual-channel fluorescent probe, named MAL-NBD, for sensitively detecting biothiols. Nonfluorescent MAL-NBD is transformed into fluorescent groups MAL and NBD-SR/NR through nucleophilic substitution by biologically active thiols, producing dual-channel fluorescence signals for precise detection of biologically active thiols. Taking advantage of the excellent biocompatibility and low biotoxicity, MAL-NBD is successfully used for imaging HeLa cancer cells and zebrafish larvae, promoting its potential application for the precise detection of biological thiols involved in physiological and pathological processes.
Collapse
Affiliation(s)
- Zhenbo Gao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Hang Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Lingzi Ran
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Dan Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Yong Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, P. R. China
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| | - Erfei Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
5
|
Tiwari G, Khanna A, Mishra VK, Sagar R. Recent developments on microwave-assisted organic synthesis of nitrogen- and oxygen-containing preferred heterocyclic scaffolds. RSC Adv 2023; 13:32858-32892. [PMID: 37942237 PMCID: PMC10628940 DOI: 10.1039/d3ra05986c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
In recent decades, the utilization of microwave energy has experienced an extraordinary surge, leading to the introduction of innovative and revolutionary applications across various fields of chemistry such as medicinal chemistry, materials science, organic synthesis and heterocyclic chemistry. Herein, we provide a comprehensive literature review on the microwave-assisted organic synthesis of selected heterocycles. We highlight the use of microwave irradiation as an effective method for constructing a diverse range of molecules with high yield and selectivity. We also emphasize the impact of microwave irradiation on the efficient synthesis of N- and O-containing heterocycles that possess bioactive properties, such as anti-cancer, anti-proliferative, and anti-tumor activities. Specific attention is given to the efficient synthesis of pyrazolopyrimidines-, coumarin-, quinoline-, and isatin-based scaffolds, which have been extensively studied for their potential in drug discovery. The article provides valuable insights into the recent synthetic protocols and trends for the development of new drugs using heterocyclic molecules.
Collapse
Affiliation(s)
- Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
6
|
Ma C, Yan D, Hou P, Liu X, Wang H, Xia C, Li G, Chen S. Bioimaging and Sensing Thiols In Vivo and in Tumor Tissues Based on a Near-Infrared Fluorescent Probe with Large Stokes Shift. Molecules 2023; 28:5702. [PMID: 37570672 PMCID: PMC10419645 DOI: 10.3390/molecules28155702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The well-known small-molecule biothiols have been used to maintain the normal metabolism of peroxy radicals, forming protein structures, resisting cell apoptosis, regulating metabolism, and protecting the homeostasis of cells in the organism. A large amount of research has found that abnormal levels of the above biothiols can cause some adverse diseases, such as changes in hair pigmentation, a slower growth rate, delayed response, excessive sleep and skin diseases. In order to further investigate the exact intracellular molecular mechanism of biothiols, it is imperative to explore effective strategies for real-time biothiol detection in living systems. In this work, a new near-infrared (NIR) emission fluorescence probe (probe 1) for sensitive and selective detection of biothiols was devised by combining dicyanoisophorone derivatives with the dinitrobenzenesulfonyl (DNBS) group. As expected, probe 1 could specifically detect biothiols (Cys, Hcy and GSH) through the dinitrobenzenesulfonyl group to form dye 2, which works as a signaling molecule for sensing biothiols in real samples. Surprisingly, probe 1 showed superior sensing characteristics and low-limit detection towards biothiols (36.0 nM for Cys, 39.0 nM for Hcy and 48.0 nM for GSH) with a large Stokes shift (134 nm). Additionally, the function of probe 1 as a platform for detecting biothiols was confirmed by confocal fluorescence imaging of biothiols in MCF-7 cells and zebrafish. More importantly, the capability of probe 1 in vivo has been further evaluated by imaging the overexpressed biothiols in tumor tissue. It is reasonable to believe that probe 1 can provide a valuable method to explore the relationship between biothiols and the genesis of tumor.
Collapse
Affiliation(s)
- Chunhui Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Dongling Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiangbao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Hao Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Chunhui Xia
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Gang Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
7
|
Wang Z, Li Z, Huang J, Han S, Li X, Wang Z. A Selective and Reversible Fluorescent Probe for Cu
2+
and GSH Detection in Aqueous Environments. ChemistrySelect 2023. [DOI: 10.1002/slct.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|