1
|
Cheng Y, Wang H, Wu Y, Ding Y, Peng C, Qi C, Xu A, Liu Y. Light-powered biodegradation of Imidacloprid by Scenedesmus sp. TXH202001: Assessing complete removal, metabolic pathways, and toxicity verification. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135345. [PMID: 39084013 DOI: 10.1016/j.jhazmat.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Imidacloprid (IMI) is used extensively as an insecticide and poses a significant risk to both the ecological environment and human health. Biological methods are currently gaining recognition among the different strategies tested for wastewater treatment. This study focused on evaluating a recently discovered green alga, Scenedesmus sp. TXH202001, isolated from a municipal wastewater treatment plant (WWTP), exhibited notable capacity for IMI removal. After an 18-day evaluation, medium IMI concentrations (50 and 100 mg/L) facilitated the growth of microalgae whereas low (5 and 20 mg/L) and high (150 mg/L) concentrations had no discernible impact. No statistically significant disparities were detected in Fv/Fm, Malonaldehyde or Superoxide dismutase across all concentrations, suggesting Scenedesmus sp. TXH202001 exhibited notable resilience and adaptability to IMI conditions. Most notably, Scenedesmus sp. TXH202001 successfully eliminated > 99 % of IMI within 18 days subjected to IMI concentrations as high as 150 mg/L, which was contingent on the environmental factor of illumination. Molecular docking was used to identify the chemical reaction sites between IMI and typical degrading enzyme CYP450. Furthermore, the study revealed that the primary path for IMI removal was biodegradation and verified that the toxicity of the degraded product was lower than parent IMI in Caenorhabditis elegans. The efficacy of Scenedesmus sp. TXH202001 in wastewater was exceptional, thereby validating its practical utility.
Collapse
Affiliation(s)
- Yongtao Cheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hongyu Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430072, China
| | - Yuanyuan Wu
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yuting Ding
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuanyue Peng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Cuicui Qi
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230061, China
| | - An Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Ying Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
2
|
Lin R, Jia Z, Chen H, Xiong H, Bian C, He X, Wei B, Fu J, Zhao M, Li J. Ferrostatin‑1 alleviates liver injury via decreasing ferroptosis following ricin toxin poisoning in rat. Toxicology 2024; 503:153767. [PMID: 38437911 DOI: 10.1016/j.tox.2024.153767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Ricin is a highly toxic plant toxin that can cause multi-organ failure, especially liver dysfunction, and is a potential bioterrorism agent. Despite the serious public health challenge posed by ricin, effective therapeutic for ricin-induced poisoning is currently unavailable. Therefore, it is important to explore the mechanism of ricin poisoning and develop appropriate treatment protocols accordingly. Previous studies have shown that lipid peroxidation and iron accumulation are associated with ricin poisoning. Ferroptosis is an iron-dependent form of cell death caused by excessive accumulation of lipid peroxide. The role and mechanism of ferroptosis in ricin poisoning are unclear and require further study. We investigated the effect of ferroptosis on ricin-induced liver injury and further elucidated the mechanism. The results showed that ferroptosis occurred in the liver of ricin-intoxicated rats, and Ferrostatin‑1 could ameliorate hepatic ferroptosis and thus liver injury. Ricin induced liver injury by decreasing hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, increasing iron, malondialdehyde and reactive oxygen species, and mitochondrial damage, whereas Ferrostatin‑1 pretreatment increased hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, decreased iron, malondialdehyde, and reactive oxygen species, and ameliorated mitochondrial damage, thereby alleviated liver injury. These results suggested that ferroptosis exacerbated liver injury after ricin poisoning and that inhibition of ferroptosis may be a novel strategy for the treatment of ricin poisoning.
Collapse
Affiliation(s)
- Ruijiao Lin
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zijie Jia
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongbing Chen
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongli Xiong
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Cunhao Bian
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin He
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bi Wei
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Junfeng Fu
- Criminal Investigation Detachment of Liangjiang New Area Branch, Chongqing Public Security Bureau, Chongqing 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jianbo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|