1
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of Ophthalmology University College London London UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology University College London London UK
- NIHR Moorfields Biomedical Research Centre Moorfields Eye Hospital London UK
| | - Rajiv Raman
- Vision Research Foundation Sankara Nethralaya Chennai Tamil Nadu India
| | | | | | - Patric Turowski
- Institute of Ophthalmology University College London London UK
| |
Collapse
|
2
|
Chen J, Wang J, Geng Y, Yue J, Shi W, Liang C, Xu W, Xu S. Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip. ACS Sens 2021; 6:1663-1670. [PMID: 33784081 DOI: 10.1021/acssensors.1c00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanotip sensitive to reactive oxygen species (ROS) and NAD+/NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide) was designed and prepared to identify the redox events in a single living cell by surface-enhanced Raman scattering (SERS) spectroscopy. The nanotips were prepared by the one-step laser-induced Ag growth and deposition. A redox-reversible Raman reporter, 4-mercaptophenol (4-MP), was employed for the nanotip decoration along with the Ag deposition. 4-MP can be converted to SERS-inactive 4-mercaptocyclohexa-2,5-dienone (4-MC) by Fe3+ ions to complete signal rezeroing for multiple oxidative stress event loops. The SERS signal conversion from 4-MC to 4-MP provides a cue for the reduction process that is NADH-dependent. In contrast, by the conversion from 4-MP to 4-MC, the oxidative stress events and the signal transduction mechanism of cells stimulated by drugs (phorbol 12-myristate 13-acetate and H2O2) can be explored by SERS. This sensor is easy to fabricate and can be recycled. This tip-typed SERS nanosensor can be extendedly available for tracing other key markers in other NAD+/NADH-mediated respiratory chain and glycolysis, e.g., lactic acid, pyruvic acid, adenosine triphosphate, and antioxidants. It will be useful for investigating the diseases of abnormal oxidative stress and mitochondrial metabolism at the single-cell level.
Collapse
Affiliation(s)
- Jiamin Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People’s Republic of China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, People’s Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Bharathi D, Krishna RH, Siddlingeshwar B, Divakar DD, Alkheraif AA. Understanding the interaction of carbon quantum dots with CuO and Cu 2O by fluorescence quenching. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:17-24. [PMID: 30763795 DOI: 10.1016/j.jhazmat.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
In spite copper oxide being one of the essential micronutrient, copper oxide in its nano size is found to be toxic in nature; this instigates for the detection of copper oxides in trace levels. In the present study, we demonstrate simple cost effective detection method for CuO/Cu2O using carbon quantum dots (CQD) by fluorescence quenching technique. CuO/Cu2O nanoparticles are synthesised by mere variation of fuel ratio by solution combustion technique. The resulting oxides are characterized by various analytical and spectroscopic techniques. Powder X- ray diffraction (PXRD) results reveals that samples prepared with oxidizer to fuel (O/F) ratios 1:1, 1:1.5 and 1:2 showed pure nano CuO, major CuO phase (minor Cu2O) and major Cu2O phase (minor CuO) respectively. Further, the samples prepared using 1:1 O/F ratio and calcinated at 700 °C showed highly crystalline CuO phase. In order to study the interaction of CuO/ Cu2O with CQDs the fluorescence quenching method has been employed. The bimolecular quenching rate constants for the samples prepared with different O/F ratios have been measured. The interaction between CQDs and copper oxides, indicates fluorescence quenching greatly depends on the oxidation state of the copper oxide and can be a promising method for detecting CuO/Cu2O through CQDs.
Collapse
Affiliation(s)
- D Bharathi
- Department of Physics, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - R Hari Krishna
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India.
| | - B Siddlingeshwar
- Department of Physics, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India.
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Abdulaziz Abdullah Alkheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
4
|
Liu Q, Sacco P, Marsich E, Furlani F, Arib C, Djaker N, Lamy de la Chapelle M, Donati I, Spadavecchia J. Lactose-Modified Chitosan Gold(III)-PEGylated Complex-Bioconjugates: From Synthesis to Interaction with Targeted Galectin-1 Protein. Bioconjug Chem 2018; 29:3352-3361. [PMID: 30215508 DOI: 10.1021/acs.bioconjchem.8b00520] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Galectins (Gal) are a family of glycan-binding proteins characterized by their affinity for β-galactosides. Galectin-1 (Gal-1), a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Coordination chemistry has been engaged to develop versatile multivalent neoglycoconjugates for binding Gal-1. In this study we report a fast and original method to synthesize hybrid gold nanoparticles in which a hydrochloride lactose-modified chitosan, named CTL, is mixed with dicarboxylic acid-terminated polyethylene glycol (PEG), leading to shell-like hybrid polymer-sugar-metal nanoparticles (CTL-PEG-AuNPs). The aim of this paper is to preliminarily study the interaction of the CTL-PEG-AuNPs with a target protein, namely, Gal-1, under specific conditions. The molecular interaction has been measured by Transmission Electron Microscopy (TEM), UV-vis, and Raman Spectroscopy on a large range of Gal-1 concentrations (from 0 to 10-12 M). We observed that the interaction was strongly dependent on the Gal-1 concentration at the surface of the gold nanoparticles.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| | - Pasquale Sacco
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences , University of Trieste , Piazza dell'Ospitale 1 , I-34129 Trieste , Italy
| | - Franco Furlani
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| | - Nadia Djaker
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283) , Le Mans Université , Avenue Olivier Messiaen , 72085 Le Mans cedex 9, France.,Department of Clinical Laboratory Medicine, Southwest Hospital , Third Military Medical University , 400038 Chongqing , China
| | - Ivan Donati
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| |
Collapse
|
5
|
Bigeon J, Huby N, Amela-Cortes M, Molard Y, Garreau A, Cordier S, Bêche B, Duvail JL. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes. NANOTECHNOLOGY 2016; 27:255201. [PMID: 27171341 DOI: 10.1088/0957-4484/27/25/255201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.
Collapse
Affiliation(s)
- J Bigeon
- Institut de Physique de Rennes, Université de Rennes 1, CNRS UMR 6251, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lussier F, Brulé T, Vishwakarma M, Das T, Spatz JP, Masson JF. Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events. NANO LETTERS 2016; 16:3866-71. [PMID: 27172291 DOI: 10.1021/acs.nanolett.6b01371] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.
Collapse
Affiliation(s)
- Félix Lussier
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
| | - Thibault Brulé
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
| | - Medhavi Vishwakarma
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Tamal Das
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg , INF 253, D-69120 Heidelberg, Germany
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
- Centre for Self-Assembled Chemical Structures (CSACS) , 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6 Canada
| |
Collapse
|
7
|
Optical fiber nanotips coated with molecular beacons for DNA detection. SENSORS 2015; 15:9666-80. [PMID: 25919369 PMCID: PMC4481987 DOI: 10.3390/s150509666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs) for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD) of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.
Collapse
|
8
|
Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal 2015; 2015:510982. [PMID: 25884032 PMCID: PMC4390168 DOI: 10.1155/2015/510982] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022] Open
Abstract
Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed.
Collapse
|
9
|
Long F, Zhu A, Shi H. Recent advances in optical biosensors for environmental monitoring and early warning. SENSORS (BASEL, SWITZERLAND) 2013; 13:13928-48. [PMID: 24132229 PMCID: PMC3859100 DOI: 10.3390/s131013928] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
The growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for legislative actions on environmental pollution control and early warning. Optical biosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. This article reviews important advances in functional biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells) that facilitate the increasing application of optical biosensors. This work further examines the significant improvements in optical biosensor instrumentation and their environmental applications. Innovative developments of optical biosensors for environmental pollution control and early warning are also discussed.
Collapse
Affiliation(s)
- Feng Long
- School of Environment and Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing 100872, China
| | - Anna Zhu
- Research Institute of Chemical Defence, No.1, Huanyin Street, Changping District, Beijing 100872, China; E-Mail:
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, No.1, Tsinghua Yuan, Haidian District, Beijing 100872, China
| |
Collapse
|
10
|
Kašík I, Podrazký O, Mrázek J, Martan T, Matějec V, Hoyerová K, Kamínek M. In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4809-15. [PMID: 24094191 DOI: 10.1016/j.msec.2013.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022]
Abstract
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues.
Collapse
Affiliation(s)
- Ivan Kašík
- Institute of Photonics and Electronics, AS CR, v.v.i., Chaberska 57, Prague 8 182 51, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ngoepe M, Choonara YE, Tyagi C, Tomar LK, du Toit LC, Kumar P, Ndesendo VMK, Pillay V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. SENSORS (BASEL, SWITZERLAND) 2013; 13:7680-713. [PMID: 23771157 PMCID: PMC3715220 DOI: 10.3390/s130607680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
Abstract
Recent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests. Even with the usage of sensors that allow diagnosis and prognosis of the illness, medical intervention still has its downfalls. Late detection of illness can reduce the efficacy of therapeutics. Furthermore, the conventional modes of treatment can cause side-effects such as tissue damage (chemotherapy and rhabdomyolysis) and induce other forms of illness (hepatotoxicity). The use of drug delivery systems enables the lowering of side-effects with subsequent improvement in patient compliance. Chronic illnesses require continuous monitoring and medical intervention for efficient treatment to be achieved. Therefore, designing a responsive system that will reciprocate to the physicochemical changes may offer superior therapeutic activity. In this respect, integration of biosensors and drug delivery is a proficient approach and requires designing an implantable system that has a closed loop system. This offers regulation of the changes by means of releasing a therapeutic agent whenever illness biomarkers prevail. Proper selection of biomarkers is vital as this is key for diagnosis and a stimulation factor for responsive drug delivery. By detecting an illness before it manifests by means of biomarkers levels, therapeutic dosing would relate to the severity of such changes. In this review various biosensors and drug delivery systems are discussed in order to assess the challenges and future perspectives of integrating biosensors and drug delivery systems for detection and management of chronic illness.
Collapse
Affiliation(s)
- Mpho Ngoepe
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lomas Kumar Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Valence M. K. Ndesendo
- School of Pharmacy and Pharmaceutical Sciences, St. John's University of Tanzania, Dodoma, Tanzania; E-Mail:
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| |
Collapse
|
12
|
Vo-Dinh T, Scaffidi J, Gregas M, Zhang Y, Seewaldt V. Applications of fiber-optics-based nanosensors to drug discovery. Expert Opin Drug Discov 2013; 4:889-900. [PMID: 23496274 DOI: 10.1517/17460440903085112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. OBJECTIVE This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. CONCLUSIONS The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).
Collapse
Affiliation(s)
- Tuan Vo-Dinh
- Duke University, Fitzpatrick Institute for Photonics, 305 Teer Building, Box 90271, Durham, NC 27708, USA +1 919 660 8520 ; +1 919 613 9145 ;
| | | | | | | | | |
Collapse
|
13
|
Rodríguez P, Rojas H, Medina M, Arrivillaga J, Francisco Y, Dager F, Piscitelli V, Caetano M, Fernández A, Castillo J. Study of Functionalized Gold Nanoparticles with Anti-gp63 IgG Antibody for the Detection of Glycoprotein gp63 in Membrane Surface of <i>Leishmania</i> Genus Parasites. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajac.2013.47a014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Shinde SB, Fernandes CB, Patravale VB. Recent trends in in-vitro nanodiagnostics for detection of pathogens. J Control Release 2012; 159:164-80. [DOI: 10.1016/j.jconrel.2011.11.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/23/2011] [Indexed: 11/17/2022]
|
15
|
Zhang Y, Dhawan A, Vo-Dinh T. Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing. NANOSCALE RESEARCH LETTERS 2011; 6:18. [PMID: 27502642 PMCID: PMC3211233 DOI: 10.1007/s11671-010-9744-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/05/2010] [Indexed: 05/13/2023]
Abstract
This paper describes the design and fabrication of fiber-optic nanoprobes developed for optical detection in single living cells. It is critical to fabricate probes with well-controlled nanoapertures for optimized spatial resolution and optical transmission. The detection sensitivity of fiber-optic nanoprobe depends mainly on the extremely small excitation volume that is determined by the aperture sizes and penetration depths. We investigate the angle dependence of the aperture in shadow evaporation of the metal coating onto the tip wall. It was found that nanoaperture diameters of approximately 50 nm can be achieved using a 25° tilt angle. On the other hand, the aperture size is sensitive to the subtle change of the metal evaporation angle and could be blocked by irregular metal grains. Through focused ion beam (FIB) milling, optical nanoprobes with well-defined aperture size as small as 200 nm can be obtained. Finally, we illustrate the use of the nanoprobes by detecting a fluorescent species, benzo[a]pyrene tetrol (BPT), in single living cells. A quantitative estimation of the numbers of BPT molecules detected using fiber-optic nanoprobes for BPT solutions shows that the limit of detection was approximately 100 molecules.
Collapse
Affiliation(s)
- Yan Zhang
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Anuj Dhawan
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Yuqing Lin
- Department of Chemistry, University of Gothenburg, S-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|
17
|
|
18
|
Vo‐Dinh T, Zhang Y. Single‐cell monitoring using fiberoptic nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:79-85. [DOI: 10.1002/wnan.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tuan Vo‐Dinh
- Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA
| | - Yan Zhang
- Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Li J, Zhang T, Ge J, Yin Y, Zhong W. Fluorescence Signal Amplification by Cation Exchange in Ionic Nanocrystals. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin Cell Dev Biol 2009; 20:27-33. [DOI: 10.1016/j.semcdb.2009.01.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/23/2009] [Indexed: 11/18/2022]
|
21
|
Li J, Zhang T, Ge J, Yin Y, Zhong W. Fluorescence Signal Amplification by Cation Exchange in Ionic Nanocrystals. Angew Chem Int Ed Engl 2009; 48:1588-91. [DOI: 10.1002/anie.200805710] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|