1
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
2
|
Abstract
![]()
Metal ions and metallocofactors play important
roles in a broad
range of biochemical reactions. Accordingly, it has been estimated
that as much as 25–50% of the proteome uses transition metal
ions to carry out a variety of essential functions. The metal ions
incorporated within metalloproteins fulfill functional roles based
on chemical properties, the diversity of which arises as transition
metals can adopt different redox states and geometries, dictated by
the identity of the metal and the protein environment. The coupling
of a metal ion with an organic framework in metallocofactors, such
as heme and cobalamin, further expands the chemical functionality
of metals in biology. The three-dimensional visualization of metal
ions and complex metallocofactors within a protein scaffold is often
a starting point for enzymology, highlighting the importance of structural
characterization of metalloproteins. Metalloprotein crystallography,
however, presents a number of implicit challenges including correctly
incorporating the relevant metal or metallocofactor, maintaining the
proper environment for the protein to be purified and crystallized
(including providing anaerobic, cold, or aphotic environments), and
being mindful of the possibility of X-ray induced damage to the proteins
or incorporated metal ions. Nevertheless, the incorporated metals
or metallocofactors also present unique advantages in metalloprotein
crystallography. The significant resonance that metals undergo with
X-ray photons at wavelengths used for protein crystallography and
the rich electronic properties of metals, which provide intense and
spectroscopically unique signatures, allow a metalloprotein crystallographer
to use anomalous dispersion to determine phases for structure solution
and to use simultaneous or parallel spectroscopic techniques on single
crystals. These properties, coupled with the improved brightness of
beamlines, the ability to tune the wavelength of the X-ray beam, the
availability of advanced detectors, and the incorporation of spectroscopic
equipment at a number of synchrotron beamlines, have yielded exciting
developments in metalloprotein structure determination. Here we will
present results on the advantageous uses of metals in metalloprotein
crystallography, including using metallocofactors to obtain phasing
information, using K-edge X-ray absorption spectroscopy to identify
metals coordinated in metalloprotein crystals, and using UV–vis
spectroscopy on crystals to probe the enzymatic activity of the crystallized
protein.
Collapse
Affiliation(s)
- Sarah E. J. Bowman
- Department
of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jennifer Bridwell-Rabb
- Department
of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Sakaguchi M, Kimura T, Nishida T, Tosha T, Sugimoto H, Yamaguchi Y, Yanagisawa S, Ueno G, Murakami H, Ago H, Yamamoto M, Ogura T, Shiro Y, Kubo M. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:334-8. [PMID: 26698082 PMCID: PMC5356500 DOI: 10.1107/s1600577515018275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/29/2015] [Indexed: 05/23/2023]
Abstract
UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.
Collapse
Affiliation(s)
- Miyuki Sakaguchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | | | - Takuma Nishida
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Yoshihiro Yamaguchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
4
|
Ronda L, Bruno S, Bettati S, Storici P, Mozzarelli A. From protein structure to function via single crystal optical spectroscopy. Front Mol Biosci 2015; 2:12. [PMID: 25988179 PMCID: PMC4428442 DOI: 10.3389/fmolb.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Neurosciences, University of Parma Parma, Italy
| | - Stefano Bruno
- Department of Pharmacy, University of Parma Parma, Italy
| | - Stefano Bettati
- Department of Neurosciences, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy ; Institute of Biophysics, Consiglio Nazionale delle Ricerche Pisa, Italy
| |
Collapse
|
5
|
Frankaer CG, Mossin S, Ståhl K, Harris P. Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T(6) bovine insulin derivatives. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:110-22. [PMID: 24419384 PMCID: PMC3919263 DOI: 10.1107/s1399004713029040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 11/21/2022]
Abstract
Using synchrotron radiation (SR), the crystal structures of T6 bovine insulin complexed with Ni(2+) and Cu(2+) were solved to 1.50 and 1.45 Å resolution, respectively. The level of detail around the metal centres in these structures was highly limited, and the coordination of water in Cu site II of the copper insulin derivative was deteriorated as a consequence of radiation damage. To provide more detail, X-ray absorption spectroscopy (XAS) was used to improve the information level about metal coordination in each derivative. The nickel derivative contains hexacoordinated Ni(2+) with trigonal symmetry, whereas the copper derivative contains tetragonally distorted hexacoordinated Cu(2+) as a result of the Jahn-Teller effect, with a significantly longer coordination distance for one of the three water molecules in the coordination sphere. That the copper centre is of type II was further confirmed by electron paramagnetic resonance (EPR). The coordination distances were refined from EXAFS with standard deviations within 0.01 Å. The insulin derivative containing Cu(2+) is sensitive towards photoreduction when exposed to SR. During the reduction of Cu(2+) to Cu(+), the coordination geometry of copper changes towards lower coordination numbers. Primary damage, i.e. photoreduction, was followed directly by XANES as a function of radiation dose, while secondary damage in the form of structural changes around the Cu atoms after exposure to different radiation doses was studied by crystallography using a laboratory diffractometer. Protection against photoreduction and subsequent radiation damage was carried out by solid embedment of Cu insulin in a saccharose matrix. At 100 K the photoreduction was suppressed by ∼15%, and it was suppressed by a further ∼30% on cooling the samples to 20 K.
Collapse
Affiliation(s)
| | - Susanne Mossin
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Kenny Ståhl
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Pompidor G, Dworkowski FSN, Thominet V, Schulze-Briese C, Fuchs MR. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:765-76. [PMID: 23955041 PMCID: PMC3747950 DOI: 10.1107/s0909049513016063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/10/2013] [Indexed: 05/08/2023]
Abstract
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.
Collapse
Affiliation(s)
| | | | | | | | - Martin R. Fuchs
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Correspondence e-mail:
| |
Collapse
|
7
|
Nakano S, Takahashi M, Sakamoto A, Morikawa H, Katayanagi K. The reductive reaction mechanism of tobacco nitrite reductase derived from a combination of crystal structures and ultraviolet-visible microspectroscopy. Proteins 2012; 80:2035-45. [PMID: 22499059 DOI: 10.1002/prot.24094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 11/05/2022]
Abstract
Assimilatory nitrite reductase (aNiR) reduces nitrite to an ammonium ion and has siroheme and a [Fe(4)S(4)] cluster as prosthetic groups. A reaction mechanism for Nii3, an aNiR from tobacco, is proposed based on high resolution X-ray structures and UV-Vis (ultraviolet-visible) microspectroscopy of Nii3-ligand complexes. Analysis of UV-Vis spectral changes in Nii3 crystals with increasing X-ray exposure showed prosthetic group reductions. In Nii3-NO2(-) structures, X-ray irradiation enhanced the progress of the reduction reaction, and cleavage of the N-O bond was observed when X-ray doses were increased. Crystal structures of Nii3 with other bound ligands, such as Nii3-NO and Nii3-NH(2)OH, were also determined. Further, by combining information from these Nii3 ligand-bound structures, including that of Nii3-NO2(-), with UV-Vis microspectral data obtained using different X-ray doses, a reaction mechanism for aNiR was suggested. Cleavage of the two N-O bonds of nitrite was envisaged as a two-step process: first, the N-O bond close to Lys224 was cleaved, followed by cleavage of the N-O bond close to Arg109. X-ray structures also indicated that aNiR-catalyzed nitrite reduction proceeded without the need for conformation changes in active site residues. Geometrical changes in the ligand molecules and the placement of neighboring water molecules appeared to be important to the stability of the active site residue interactions (Arg109, Arg179, and Lys224) and the ligand molecule. These interactions may contribute to the efficiency of aNiR reduction reactions.
Collapse
Affiliation(s)
- Shogo Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
8
|
X-ray crystallography marries spectroscopy to unveil structure and function of biological macromolecules. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:731-3. [DOI: 10.1016/j.bbapap.2011.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Orville AM, Buono R, Cowan M, Héroux A, Shea-McCarthy G, Schneider DK, Skinner JM, Skinner MJ, Stoner-Ma D, Sweet RM. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:358-66. [PMID: 21525643 PMCID: PMC3083912 DOI: 10.1107/s0909049511006315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/19/2011] [Indexed: 05/05/2023]
Abstract
The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.
Collapse
Affiliation(s)
- Allen M Orville
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sage JT, Zhang Y, McGeehan J, Ravelli RBG, Weik M, van Thor JJ. Infrared protein crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:760-77. [PMID: 21376143 DOI: 10.1016/j.bbapap.2011.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
Abstract
We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO(2). Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- J Timothy Sage
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Antonyuk SV, Hough MA. Monitoring and validating active site redox states in protein crystals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:778-84. [PMID: 21215826 DOI: 10.1016/j.bbapap.2010.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Svetlana V Antonyuk
- Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|
12
|
Stoner-Ma D, Skinner JM, Schneider DK, Cowan M, Sweet RM, Orville AM. Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:37-40. [PMID: 21169688 PMCID: PMC3004251 DOI: 10.1107/s0909049510033601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/20/2010] [Indexed: 05/05/2023]
Abstract
Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of `mystery density', i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 Å resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data.
Collapse
Affiliation(s)
- Deborah Stoner-Ma
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Correspondence e-mail: ,
| | - John M. Skinner
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Matt Cowan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert M. Sweet
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Allen M. Orville
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Correspondence e-mail: ,
| |
Collapse
|
13
|
Ronda L, Bruno S, Bettati S, Mozzarelli A. Protein crystal microspectrophotometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:734-41. [PMID: 21184848 DOI: 10.1016/j.bbapap.2010.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 11/16/2022]
Abstract
Single crystal microspectrophotometry has emerged as a valuable technique for monitoring molecular events that take place within protein crystals, thus tightly coupling structure to function. Absorption and fluorescence spectra, ligand binding affinities and kinetic constants can be determined, allowing i) the definition of the experimental conditions for X-ray crystallography experiments and their interpretation, ii) the assessment of whether crystal lattice forces have altered conformational equilibria, iii) the comparison with data obtained in solution. Microspectrophotometric measurements using oriented crystals and linearly polarized light are carried out usually off-line with respect to X-ray data collection and are aimed at an in- depth characterization of protein function in the crystal, leading to robust structure-function relationships. The power of this approach is highlighted by reporting a few case studies, including hemoglobins, pyridoxal 5'-phosphate-dependent enzymes and acetylcholinesterases. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
14
|
Ronda L, Bazhulina NP, Morozova EA, Revtovich SV, Chekhov VO, Nikulin AD, Demidkina TV, Mozzarelli A. Exploring methionine γ-lyase structure-function relationship via microspectrophotometry and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:834-42. [PMID: 20601224 DOI: 10.1016/j.bbapap.2010.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/26/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) dependent methionine γ-lyase catalyzes the breakdown of L-methionine to α-ketobutyric acid, methanethiol and ammonia. This enzyme, present in anaerobic microorganisms, has biomedical interest both for its activity as antitumor agent, depleting methionine supply in methionine-dependent cancers, and as target in the treatment of human pathogen infections, activating the pro-drug trifluoromethionine. To validate the structure of the enzyme from Citrobacter freundii, crystallized from monomethyl ether polyethylene glycol 2000, for the development of lead compounds, the reactivity of the crystalline enzyme towards L-methionine, substrate analogs and inhibitors was determined by polarized absorption microspectrophotometry. Spectral data were also collected for enzyme crystals, grown in monomethyl ether polyethylene glycol 2000 in the presence of ammonium sulfate. The three-dimensional structure of these enzyme crystals, solved at 1.65Å resolution with R(free) 23.2%, revealed the surprising absence of the aldimine bond between the active site Lys210 and PLP. Different hypothesis are proposed and discussed in the light of spectral and structural data, pointing out to the relevance of the complementarity between X-ray crystallography and single crystal spectroscopy for the understanding of biological mechanisms at molecular level. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Weik M, Colletier JP. Temperature-dependent macromolecular X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:437-46. [PMID: 20382997 PMCID: PMC2852308 DOI: 10.1107/s0907444910002702] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.
Collapse
Affiliation(s)
- Martin Weik
- CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble, France.
| | | |
Collapse
|
16
|
Kitago Y, Watanabe N, Tanaka I. Semi-automated protein crystal mounting device for the sulfur single-wavelength anomalous diffraction method. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889809054272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.
Collapse
|
17
|
Wöhri AB, Wahlgren WY, Malmerberg E, Johansson LC, Neutze R, Katona G. Lipidic sponge phase crystal structure of a photosynthetic reaction center reveals lipids on the protein surface. Biochemistry 2009; 48:9831-8. [PMID: 19743880 DOI: 10.1021/bi900545e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins are embedded in a lipid bilayer and maintain strong interactions with lipid molecules. Tightly bound lipids are responsible for vertical positioning and integration of proteins in the membrane and for assembly of multisubunit complexes and occasionally act as substrates. In this work we present the lipidic sponge phase crystal structure of the reaction center from Blastochloris viridis to 1.86 A, which reveals lipid molecules interacting with the protein surface. A diacylglycerol molecule is bound, through a thioether bond, to the N-terminus of the tetraheme cytochrome c subunit. From the electron density recovered at the Q(B) site and the observed change in recombination kinetics in lipidic sponge phase-grown crystals, the mobile ubiquinone appears to be displaced by a monoolein molecule. A 36 A long electron density feature is observed at the interface of transmembrane helices belonging to the H- and M-subunits, probably arising from an unidentified lipid.
Collapse
Affiliation(s)
- Annemarie B Wöhri
- Department of Chemical and Biological Engineering, Molecular Biotechnology, Chalmers University of Technology, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Bourgeois D, Weik M. Kinetic protein crystallography: a tool to watch proteins in action. CRYSTALLOGR REV 2009. [DOI: 10.1080/08893110802604868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
McGeehan J, Ravelli RBG, Murray JW, Owen RL, Cipriani F, McSweeney S, Weik M, Garman EF. Colouring cryo-cooled crystals: online microspectrophotometry. JOURNAL OF SYNCHROTRON RADIATION 2009; 16:163-72. [PMID: 19240328 PMCID: PMC2651762 DOI: 10.1107/s0909049509001629] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/13/2009] [Indexed: 05/17/2023]
Abstract
X-rays can produce a high concentration of radicals within cryo-cooled macromolecular crystals. Some radicals have large extinction coefficients in the visible (VIS) range of the electromagnetic spectrum, and can be observed optically and spectrally. An online microspectrophotometer with high temporal resolution has been constructed that is capable of measuring UV/VIS absorption spectra (200-1100 nm) during X-ray data collection. The typical X-ray-induced blue colour that is characteristic of a wide range of cryo-conditions has been identified as trapped solvated electrons. Disulphide-containing proteins are shown to form disulphide radicals at millimolar concentrations, with absorption maxima around 400 nm. The solvated electrons and the disulphide radicals seem to have a lifetime in the range of seconds up to minutes at 100 K. The temperature dependence of the kinetics of X-ray-induced radical formation is different for the solvated electrons compared with the disulphide radicals. The online microspectrophotometer provides a technique complementary to X-ray diffraction for analysing and characterizing intermediates and redox states of proteins and enzymes.
Collapse
Affiliation(s)
- John McGeehan
- EMBL, 6 rue Jules Horowitz, 38042 Grenoble, France
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Raimond B. G. Ravelli
- EMBL, 6 rue Jules Horowitz, 38042 Grenoble, France
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), PO Box 9600, 2300RC Leiden, The Netherlands
- Correspondence e-mail: ,
| | - James W. Murray
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Robin Leslie Owen
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | - Martin Weik
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, Jean Pierre EBEL, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Correspondence e-mail: ,
| |
Collapse
|
20
|
Owen RL, Pearson AR, Meents A, Boehler P, Thominet V, Schulze-Briese C. A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2009; 16:173-82. [PMID: 19240329 PMCID: PMC2651763 DOI: 10.1107/s0909049508040120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 11/27/2008] [Indexed: 05/05/2023]
Abstract
X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV-Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV-Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined.
Collapse
Affiliation(s)
- Robin L. Owen
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Arwen R. Pearson
- Astbury Centre for Structural Molecular Biology, Astbury Building, The University of Leeds, Leeds LS2 9JT, UK
| | - Alke Meents
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Pirmin Boehler
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Vincent Thominet
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | |
Collapse
|
21
|
Orville AM, Lountos GT, Finnegan S, Gadda G, Prabhakar R. Crystallographic, spectroscopic, and computational analysis of a flavin C4a-oxygen adduct in choline oxidase. Biochemistry 2009; 48:720-8. [PMID: 19133805 DOI: 10.1021/bi801918u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 A resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. We propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.
Collapse
Affiliation(s)
- Allen M Orville
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | | | | | | | | |
Collapse
|
22
|
Strange RW, Feiters MC. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences. Curr Opin Struct Biol 2008; 18:609-16. [DOI: 10.1016/j.sbi.2008.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/18/2008] [Indexed: 01/07/2023]
|