1
|
Kasmi Y, Khataby K, Souiri A, Ennaji MM. Coronaviridae: 100,000 Years of Emergence and Reemergence. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7149750 DOI: 10.1016/b978-0-12-819400-3.00007-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coronavirus family (Coronaviridae) is a positive-sense single-stranded RNA, with a size of 27 kb. These viruses have a potential species specificity and interspecies transmission. The interspecies transmission of viruses from one host species to another is a major factor responsible for the majority of emerging and reemerging infections. The Coronaviridae is one of the most popular emerging viral families that threaten to the public health.
Collapse
|
2
|
Niu GJ, Wang S, Xu JD, Yang MC, Sun JJ, He ZH, Zhao XF, Wang JX. The polymeric immunoglobulin receptor-like protein from Marsupenaeus japonicus is a receptor for white spot syndrome virus infection. PLoS Pathog 2019; 15:e1007558. [PMID: 30726286 PMCID: PMC6380602 DOI: 10.1371/journal.ppat.1007558] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 02/19/2019] [Accepted: 01/03/2019] [Indexed: 12/03/2022] Open
Abstract
Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. White Spot Syndrome Virus (WSSV) is one of the most virulent pathogens in shrimp farming. Several viral candidate receptors, or attachment factors were reported in previous studies, however, most of them are not authentic transmembrane proteins. In particular, the protein receptor(s) required the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a polymeric immunoglobulin receptor (pIgR) like protein, a bona fide transmembrane receptor, was identified in kuruma shrimp, Marsupenaeus japonicus (MjpIgR for short). Knockdown of MjpIgR by RNA interference, and blocking it by its antibody prevented WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further study found that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular cellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis, indicating that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. This study provides a new target for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
3
|
Glycans Controlling Virus Infections: Meeting Report on the 1st International Symposium on Glycovirology Schöntal, Germany, 02⁻04 May 2018. Viruses 2018; 10:v10110636. [PMID: 30445709 PMCID: PMC6266297 DOI: 10.3390/v10110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Glycans are, with nucleic acids, proteins and lipids, one of the four founding structures of cellular life. Due to their non-template synthesis, they are inherently heterogeneous and difficult to study with regards to their structure and function. Since 2016, the research group ViroCarb, funded by the German Research Foundation, has investigated the role of glycans in non-enveloped virus infections with a highly interdisciplinary approach. The core idea was to bring together scientists and students from various disciplines such as structural biology, cell biology, virology and chemistry to advance research by an interdisciplinary means. In 2018, ViroCarb hosted the 1st International Symposium on Glycovirology in Schöntal, Germany, with a similar aim. Scientists from various disciplines gathered to discuss their area of study, present recent findings, establish or strengthen collaborations, and mentor the next generation of glycovirologists through formal presentations and informal discussions. The secluded meeting at the monastery of Schöntal gave ample time for in-depth discussions. On behalf of ViroCarb, this report summarizes the reports and highlights advances in the field.
Collapse
|
4
|
Reguera J, Mudgal G, Santiago C, Casasnovas JM. A structural view of coronavirus-receptor interactions. Virus Res 2014; 194:3-15. [PMID: 25451063 PMCID: PMC7114462 DOI: 10.1016/j.virusres.2014.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/16/2023]
Abstract
In the coronavirus (CoV), the envelope spike (S) glycoprotein is responsible for CoV cell entry and host-to-host transmission. The S is a multifunctional glycoprotein that mediates both attachment of CoV particles to cell surface receptor molecules as well as membrane penetration by fusion. Receptor-binding domains (RBD) have been identified in the S of diverse CoV; they usually contain antigenic determinants targeted by antibodies that neutralize CoV infections. To penetrate host cells, the CoV can use various cell surface molecules, although they preferentially bind to ectoenzymes. Several crystal structures have determined the folding of CoV RBD and the mode by which they recognize cell entry receptors. Here we review the CoV-receptor complex structures reported to date, and highlight the distinct receptor recognition modes, common features, and key determinants of the binding specificity. Structural studies have established the basis for understanding receptor recognition diversity in CoV, its evolution and the adaptation of this virus family to different hosts. CoV responsible for recent outbreaks have extraordinary potential for cross-species transmission; their RBD bear large platforms specialized in recognition of receptors from different species, which facilitates host-to-host circulation and adaptation to man.
Collapse
Affiliation(s)
- Juan Reguera
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble Cedex 9, France
| | - Gaurav Mudgal
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain
| | - César Santiago
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain
| | - José M Casasnovas
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Abstract
For about 30 years X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography. Landmarks of new virus structures determinations, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated to methodological breakthroughs in X-ray crystallography. In this chapter we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus studies. For example, the solution of the phase problem, a central issue in X-ray diffraction, has benefited enormously from the presence of non-crystallographic symmetry in virus crystals.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, c/Baldiri i Reixac 10, 08028, Barcelona, Spain,
| | | | | |
Collapse
|
6
|
Abstract
The virus particles described in previous chapters are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles attach initially to specific molecules on the host cell surface. These virus receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and virus variants with distinct receptor-binding specificities and tropism can appear. The identification of virus receptors and the characterization of virus-receptor interactions have been major research goals in virology for the last two decades. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus entry.
Collapse
|
7
|
Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 2013; 11:e1001571. [PMID: 23723737 PMCID: PMC3665890 DOI: 10.1371/journal.pbio.1001571] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/17/2013] [Indexed: 02/07/2023] Open
Abstract
Relentless selective pressures exerted by viruses trigger arms race dynamics that shape the evolution of even critical host genes like those involved in iron homeostasis. Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses. Genetic differences between mammalian species dictate the patterns of viral infection observed in nature. They also define how viruses must evolve in order to infect new mammalian hosts, giving rise to new and sometimes pandemic diseases. Because viruses must enter cells before they can replicate, new diseases often emerge when existing viruses evolve the ability to bind to the cell-surface receptor of a new species. At the same time, host cell receptors also evolve to counteract virus attacks. This back-and-forth evolution between virus and host can lead to an arms race that shapes the sequences of the proteins involved. In wild rodent populations, the retrovirus MMTV and New World arenaviruses both exploit Transferrin Receptor 1 (TfR1) to enter the cells of their hosts. Here we show that the physical interactions between these viruses and TfR1 have triggered evolutionary arms race dynamics that have directly modified the sequence of TfR1 and at least one of the viruses involved. Computational evolutionary analysis allowed us to identify specific residues in TfR1 that define patterns of viral infection in nature. The approach presented here can theoretically be applied to the study of any virus, through analysis of host genes known to be key to controlling viral infection. As such, this approach can expand our understanding of how viruses emerge from wildlife reservoirs, and how they drive the evolution of host genes.
Collapse
Affiliation(s)
- Ann Demogines
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jonathan Abraham
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyeryun Choe
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara L. Sawyer
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
9
|
Evidence for ACE2-utilizing coronaviruses (CoVs) related to severe acute respiratory syndrome CoV in bats. J Virol 2012; 86:6350-3. [PMID: 22438550 DOI: 10.1128/jvi.00311-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2002, severe acute respiratory syndrome (SARS)-coronavirus (CoV) appeared as a novel human virus with high similarity to bat coronaviruses. However, while SARS-CoV uses the human angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry, no coronavirus isolated from bats appears to use ACE2. Here we show that signatures of recurrent positive selection in the bat ACE2 gene map almost perfectly to known SARS-CoV interaction surfaces. Our data indicate that ACE2 utilization preceded the emergence of SARS-CoV-like viruses from bats.
Collapse
|
10
|
Bowden TA, Jones EY, Stuart DI. Cells under siege: viral glycoprotein interactions at the cell surface. J Struct Biol 2011; 175:120-6. [PMID: 21440638 PMCID: PMC3137789 DOI: 10.1016/j.jsb.2011.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 12/25/2022]
Abstract
As obligate parasites, viruses are required to enter and replicate within their host, a process which employs many of their proteins to hijack natural cellular processes. High resolution X-ray crystallographic analysis has proven to be an ideal method to visualize the mechanisms by which such virus-host interactions occur and has revealed the innovative capacity of viruses to adapt efficiently to their hosts. In this review, we draw upon recently elucidated paramyxovirus-, arenavirus-, and poxvirus-host protein complex crystal structures to reveal both the capacity of viruses to appropriate one component of a physiological protein–protein binding event (often modifying it to out-compete the host-protein), and the ability to utilize novel binding sites on host cell surface receptors. The structures discussed shed light on a number of biological processes ranging from viral entry to virulence and host antagonism. Drawn together they reveal the common strategies which viruses have evolved to interact with their natural host. The structures also support molecular level rationales for how viruses can be transmitted to unrelated organisms and thus pose severe health risks.
Collapse
Affiliation(s)
- Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX37BN, United Kingdom.
| | | | | |
Collapse
|
11
|
Van Regenmortel MHV. First Aegean International Conference on Molecular Recognition. Expert Rev Proteomics 2010; 7:639-42. [PMID: 20973636 DOI: 10.1586/epr.10.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This meeting report describes some of the highlights of the First Biennial Aegean International Conference on Molecular Recognition that took place in Hersonissos, Crete, Greece, between 6 and 11 June 2010. The conference comprised four sessions devoted to: dynamic and combinatorial molecular recognition; B-cell epitope prediction, synthesis and vaccines; nanotechnology approaches to molecular recognition; and host-pathogen interactions. A total of 35 oral communications and 15 posters were presented. The second Aegean International Conference on Molecular Recognition is scheduled to take place in the spring of 2012.
Collapse
|
12
|
Structure of adenovirus type 21 knob in complex with CD46 reveals key differences in receptor contacts among species B adenoviruses. J Virol 2010; 84:3189-200. [PMID: 20071571 DOI: 10.1128/jvi.01964-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The complement regulation protein CD46 is the primary attachment receptor for most species B adenoviruses (Ads). However, significant variability exists in sequence and structure among species B Ads in the CD46-binding regions, correlating with differences in affinity. Here, we report a structure-function analysis of the interaction of the species B Ad21 knob with the two N-terminal repeats SCR1 and SCR2 of CD46, CD46-D2. We have determined the structures of the Ad21 knob in its unliganded form as well as in complex with CD46-D2, and we compare the interactions with those observed for the Ad11 knob-CD46-D2 complex. Surface plasmon resonance measurements demonstrate that the affinity of Ad21 knobs for CD46-D2 is 22-fold lower than that of the Ad11 knob. The superposition of the Ad21 and Ad11 knob structures in complex with CD46-D2 reveals a substantially different binding mode, providing an explanation for the weaker binding affinity of the Ad21 knob for its receptor. A critical difference in both complex structures is that a key interaction point, the DG loop, protrudes more in the Ad21 knob than in the Ad11 knob. Therefore, the protruding DG loop does not allow CD46-D2 to approach the core of the Ad21 knob as closely as in the Ad11 knob-CD46-D2 complex. In addition, the engagement of CD46-D2 induces a conformational change in the DG loop in the Ad21 knob but not in the Ad11 knob. Our results contribute to a more profound understanding of the CD46-binding mechanism of species B Ads and have relevance for the design of more efficient gene delivery vectors.
Collapse
|
13
|
Santiago C, Celma ML, Stehle T, Casasnovas JM. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat Struct Mol Biol 2009; 17:124-9. [DOI: 10.1038/nsmb.1726] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/29/2009] [Indexed: 12/25/2022]
|