1
|
van der Sleen L, Stevens JA, Marrink SJ, Poolman B, Tych K. Probing the stability and interdomain interactions in the ABC transporter OpuA using single-molecule optical tweezers. Cell Rep 2024; 43:114110. [PMID: 38607912 DOI: 10.1016/j.celrep.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.
Collapse
Affiliation(s)
- Lyan van der Sleen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Jan A Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Siewert J Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Kasia Tych
- Chemical Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Krantz BA. Anthrax Toxin: Model System for Studying Protein Translocation. J Mol Biol 2024; 436:168521. [PMID: 38458604 DOI: 10.1016/j.jmb.2024.168521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on β-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Collagen-like Motifs of SasG: A Novel Fold for Protein Mechanical Strength. J Mol Biol 2023; 435:167980. [PMID: 36708761 DOI: 10.1016/j.jmb.2023.167980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The Staphylococcus aureus surface protein G (SasG) is associated with host colonisation and biofilm formation. As colonisation occurs at the liquid-substrate interface bacteria are subject to a myriad of external forces and, presumably as a consequence, SasG displays extreme mechanical strength. This mechanical phenotype arises from the B-domain; a repetitive region composed of alternating E and G5 subdomains. These subdomains have an unusual structure comprising collagen-like regions capped by triple-stranded β-sheets. To identify the determinants of SasG mechanical strength, we characterised the mechanical phenotype and thermodynamic stability of 18 single substitution variants of a pseudo-wildtype protein. Visualising the mechanically-induced transition state at a residue-level by ϕ-value analysis reveals that the main force-bearing regions are the N- and C-terminal 'Mechanical Clamps' and their side-chain interactions. This is tailored by contacts at the pseudo-hydrophobic core interface. We also describe a novel mechanical motif - the collagen-like region and show that glycine to alanine substitutions, analogous to those found in Osteogenesis Imperfecta (brittle bone disease), result in a significantly reduced mechanical strength.
Collapse
|
4
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
5
|
Liu Z, Moreira RA, Dujmović A, Liu H, Yang B, Poma AB, Nash MA. Mapping Mechanostable Pulling Geometries of a Therapeutic Anticalin/CTLA-4 Protein Complex. NANO LETTERS 2022; 22:179-187. [PMID: 34918516 PMCID: PMC8759085 DOI: 10.1021/acs.nanolett.1c03584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Indexed: 05/27/2023]
Abstract
We used single-molecule AFM force spectroscopy (AFM-SMFS) in combination with click chemistry to mechanically dissociate anticalin, a non-antibody protein binding scaffold, from its target (CTLA-4), by pulling from eight different anchor residues. We found that pulling on the anticalin from residue 60 or 87 resulted in significantly higher rupture forces and a decrease in koff by 2-3 orders of magnitude over a force range of 50-200 pN. Five of the six internal anchor points gave rise to complexes significantly more stable than N- or C-terminal anchor points, rupturing at up to 250 pN at loading rates of 0.1-10 nN s-1. Anisotropic network modeling and molecular dynamics simulations helped to explain the geometric dependency of mechanostability. These results demonstrate that optimization of attachment residue position on therapeutic binding scaffolds can provide large improvements in binding strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Rodrigo A. Moreira
- Biosystems
and Soft Matter Division, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Ana Dujmović
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Byeongseon Yang
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Adolfo B. Poma
- Biosystems
and Soft Matter Division, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
- International
Center for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
- National
Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Mapplebeck S, Booth J, Shalashilin D. Simulation of protein pulling dynamics on second time scale with boxed molecular dynamics. J Chem Phys 2021; 155:085101. [PMID: 34470356 DOI: 10.1063/5.0059321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We demonstrate how recently developed Boxed Molecular Dynamics (BXD) and kinetics [D. V. Shalashilin et al., J. Chem. Phys. 137, 165102 (2012)] can provide a kinetic description of protein pulling experiments, allowing for a connection to be made between experiment and the atomistic protein structure. BXD theory applied to atomic force microscopy unfolding is similar in spirit to the kinetic two-state model [A. Noy and R. W. Friddle, Methods 60, 142 (2013)] but with some differences. First, BXD uses a large number of boxes, and therefore, it is not a two-state model. Second, BXD rate coefficients are obtained from atomistic molecular dynamics simulations. BXD can describe the dependence of the pulling force on pulling speed. Similar to Shalashilin et al. [J. Chem. Phys. 137, 165102 (2012)], we show that BXD is able to model the experiment at a very long time scale up to seconds, which is way out of reach for standard molecular dynamics.
Collapse
Affiliation(s)
- Sarah Mapplebeck
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jonathan Booth
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
7
|
Yin YD, Zhang L, Leng XZ, Gu ZY. Harnessing biological nanopore technology to track chemical changes. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Deng Y, Wu T, Wang M, Shi S, Yuan G, Li X, Chong H, Wu B, Zheng P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat Commun 2019; 10:2775. [PMID: 31235796 PMCID: PMC6591319 DOI: 10.1038/s41467-019-10696-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
The recent development of chemical and bio-conjugation techniques allows for the engineering of various protein polymers. However, most of the polymerization process is difficult to control. To meet this challenge, we develop an enzymatic procedure to build polyprotein using the combination of a strict protein ligase OaAEP1 (Oldenlandia affinis asparaginyl endopeptidases 1) and a protease TEV (tobacco etch virus). We firstly demonstrate the use of OaAEP1-alone to build a sequence-uncontrolled ubiquitin polyprotein and covalently immobilize the coupled protein on the surface. Then, we construct a poly-metalloprotein, rubredoxin, from the purified monomer. Lastly, we show the feasibility of synthesizing protein polymers with rationally-controlled sequences by the synergy of the ligase and protease, which are verified by protein unfolding using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Thus, this study provides a strategy for polyprotein engineering and immobilization.
Collapse
Affiliation(s)
- Yibing Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengdi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guodong Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hanchung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| |
Collapse
|
9
|
Li J, Li H. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins. J Phys Chem B 2018; 122:9340-9349. [PMID: 30212202 DOI: 10.1021/acs.jpcb.8b07614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-potential iron-sulfur proteins (HiPIPs) are an important class of metalloproteins with a [4Fe-4S] cluster coordinated by four cysteine residues. Distinct from other iron-sulfur proteins, the cluster in HiPIP has a high reduction potential, making it an essential electron carrier in bacterial photosynthesis. Here, we combined single-molecule atomic force microscopy and protein engineering techniques to investigate the mechanical unfolding mechanism of HiPIP from Chromatium tepidum (cHiPIP). We found that cHiPIP unfolds in a two-step fashion with the protein sequence sequestered by the iron-sulfur center as a stable unfolding intermediate state. The rupture of the iron-sulfur center of cHiPIP proceeds in two distinct parallel pathways; one pathway involves the concurrent rupture of multiple iron-thiolate bonds, and the other one involves the sequential rupture of the iron-thiolate bonds. This mechanistic information was further confirmed by mutational studies. We found that the rupture of the iron-thiolate bonds in reduced and oxidized cHiPIP occurred in the range of 150-180 pN at a pulling speed of 400 nm/s, similar to that measured for iron-thiolate bonds in rubredoxin and ferredoxin. Our results may have important implications for understanding the general unfolding mechanism governing iron-sulfur proteins, as well as the mechanism governing the mechanical rupture of the iron-sulfur center.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Hongbin Li
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
10
|
Manteca A, Alonso-Caballero Á, Fertin M, Poly S, De Sancho D, Perez-Jimenez R. The influence of disulfide bonds on the mechanical stability of proteins is context dependent. J Biol Chem 2017. [PMID: 28642368 DOI: 10.1074/jbc.m117.784934] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins.
Collapse
Affiliation(s)
- Aitor Manteca
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
| | | | - Marie Fertin
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
| | - Simon Poly
- the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and
| | - David De Sancho
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain, .,the IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raul Perez-Jimenez
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain, .,the IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat Commun 2017; 8:14804. [PMID: 28429713 PMCID: PMC5413942 DOI: 10.1038/ncomms14804] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.
Collapse
Affiliation(s)
- Samuel J Hickman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachael E M Cooper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro, 12-56127 Pisa, Italy
| | - Emanuele Paci
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Abstract
Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, β2-microglobulin (β2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL-1 In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.
Collapse
|
13
|
Unusually high mechanical stability of bacterial adhesin extender domains having calcium clamps. PLoS One 2017; 12:e0174682. [PMID: 28376122 PMCID: PMC5380327 DOI: 10.1371/journal.pone.0174682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/12/2017] [Indexed: 01/07/2023] Open
Abstract
To gain insight into the relationship between protein structure and mechanical stability, single molecule force spectroscopy experiments on proteins with diverse structure and topology are needed. Here, we measured the mechanical stability of extender domains of two bacterial adhesins MpAFP and MhLap, in an atomic force microscope. We find that both proteins are remarkably stable to pulling forces between their N- and C- terminal ends. At a pulling speed of 1 μm/s, the MpAFP extender domain fails at an unfolding force Fu = 348 ± 37 pN and MhLap at Fu = 306 ± 51 pN in buffer with 10 mM Ca2+. These forces place both extender domains well above the mechanical stability of many other β-sandwich domains in mechanostable proteins. We propose that the increased stability of MpAFP and MhLap is due to a combination of both hydrogen bonding between parallel terminal strands and intra-molecular coordination of calcium ions.
Collapse
|
14
|
Lei H, Guo Y, Hu X, Hu C, Hu X, Li H. Reversible Unfolding and Folding of the Metalloprotein Ferredoxin Revealed by Single-Molecule Atomic Force Microscopy. J Am Chem Soc 2017; 139:1538-1544. [DOI: 10.1021/jacs.6b11371] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hai Lei
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yabin Guo
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaodong Hu
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Chunguang Hu
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaotang Hu
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongbin Li
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation. J Mol Model 2016; 22:188. [DOI: 10.1007/s00894-016-3052-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
16
|
Booth JJ, Shalashilin DV. Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics. J Phys Chem B 2016; 120:700-8. [DOI: 10.1021/acs.jpcb.5b11519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Direct Observation of the Reversible Two-State Unfolding and Refolding of an α/β Protein by Single-Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
He C, Hu C, Hu X, Hu X, Xiao A, Perkins TT, Li H. Direct Observation of the Reversible Two‐State Unfolding and Refolding of an α/β Protein by Single‐Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015; 54:9921-5. [DOI: 10.1002/anie.201502938] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Chengzhi He
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Thomas T. Perkins
- JILA, NIST and University of Colorado Boulder, Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, 440 UCB Boulder, CO 80309 (USA)
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| |
Collapse
|
19
|
Farrance OE, Paci E, Radford SE, Brockwell DJ. Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments. ACS NANO 2015; 9:1315-1324. [PMID: 25646767 DOI: 10.1021/nn505135d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The atomic force microscope (AFM) is able to manipulate biomolecules and their complexes with exquisite force sensitivity and distance resolution. This capability, complemented by theoretical models, has greatly improved our understanding of the determinants of mechanical strength in proteins and revealed the diverse effects of directional forces on the energy landscape of biomolecules. In unbinding experiments, the interacting partners are usually immobilized on their respective substrates via extensible linkers. These linkers affect both the force and contour length (Lc) of the complex at rupture. Surprisingly, while the former effect is well understood, the latter is largely neglected, leading to incorrect estimations of Lc, a parameter that is often used as evidence for the detection of specific interactions and remodeling events and for the inference of interaction regions. To address this problem, a model that predicts contour length measurements from single-molecule forced-dissociation experiments is presented that considers attachment position on the AFM tip, geometric effects, and polymer dynamics of the linkers. Modeled data are compared with measured contour length distributions from several different experimental systems, revealing that current methods underestimate contour lengths. The model enables nonspecific interactions to be identified unequivocally, allows accurate determination of Lc, and, by comparing experimental and modeled distributions, enables partial unfolding events before rupture to be identified unequivocally.
Collapse
Affiliation(s)
- Oliver E Farrance
- Astbury Centre for Structural and Molecular Biology and School of Molecular and Cellular Biology, University of Leeds , Leeds, West Yorkshire, LS2 9JT, U.K
| | | | | | | |
Collapse
|
20
|
Chen Y, Radford SE, Brockwell DJ. Force-induced remodelling of proteins and their complexes. Curr Opin Struct Biol 2015; 30:89-99. [PMID: 25710390 PMCID: PMC4499843 DOI: 10.1016/j.sbi.2015.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
Abstract
Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study.
Collapse
Affiliation(s)
- Yun Chen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Różycki B, Mioduszewski Ł, Cieplak M. Unbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps. Proteins 2014; 82:3144-53. [PMID: 25142868 DOI: 10.1002/prot.24674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/12/2022]
Abstract
Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pulling and may take place in several pathways. Interestingly, the CD48-2B4 interface can be divided into three distinct patches that act as units when resisting the pulling forces. At experimentally accessible pulling speeds, the characteristic mechanostability forces are in the range between 100 and 200 pN, depending on the pulling direction. These characteristic forces need not be associated with tensile forces involved in the act of separation of the complex because prior shear-involving unraveling within individual proteins may give rise to a higher force peak.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, 02-668, Warsaw, Poland
| | | | | |
Collapse
|
22
|
Galzitskaya OV, Pereyaslavets LB, Glyakina AV. Folding of Right- and Left-Handed Three-Helix Proteins. Isr J Chem 2014. [DOI: 10.1002/ijch.201300146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Ramanujam V, Kotamarthi HC, Ainavarapu SRK. Ca2+ binding enhanced mechanical stability of an archaeal crystallin. PLoS One 2014; 9:e94513. [PMID: 24728085 PMCID: PMC3984160 DOI: 10.1371/journal.pone.0094513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and 10FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). In proteins with β-sandwich topology, if the terminal strands are directly connected by backbone H-bonding then this geometry can serve as a “mechanical clamp”. Proteins with this geometry are shown to have very high unfolding forces. Here, we set out to explore the mechanical properties of a protein, M-crystallin, which belongs to β-sandwich topology consisting of Greek key motifs but its overall structure lacks the “mechanical clamp” geometry at the termini. M-crystallin is a Ca2+ binding protein from Methanosarcina acetivorans that is evolutionarily related to the vertebrate eye lens β and γ-crystallins. We constructed an octamer of crystallin, (M-crystallin)8, and using SMFS, we show that M-crystallin unfolds in a two-state manner with an unfolding force ∼90 pN (at a pulling speed of 1000 nm/sec), which is much lower than that of I27. Our study highlights that the β-sandwich topology proteins with a different strand-connectivity than that of I27 and 10FNIII, as well as lacking “mechanical clamp” geometry, can be mechanically resistant. Furthermore, Ca2+ binding not only stabilizes M-crystallin by 11.4 kcal/mol but also increases its unfolding force by ∼35 pN at the same pulling speed. The differences in the mechanical properties of apo and holo M-crystallins are further characterized using pulling speed dependent measurements and they show that Ca2+ binding reduces the unfolding potential width from 0.55 nm to 0.38 nm. These results are explained using a simple two-state unfolding energy landscape.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | |
Collapse
|
24
|
Nanomechanics of β-rich proteins related to neuronal disorders studied by AFM, all-atom and coarse-grained MD methods. J Mol Model 2014; 20:2144. [PMID: 24562857 PMCID: PMC3964301 DOI: 10.1007/s00894-014-2144-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/12/2014] [Indexed: 11/25/2022]
Abstract
Computer simulations of protein unfolding substantially help to interpret force-extension curves measured in single-molecule atomic force microscope (AFM) experiments. Standard all-atom (AA) molecular dynamics simulations (MD) give a good qualitative mechanical unfolding picture but predict values too large for the maximum AFM forces with the common pulling speeds adopted here. Fine tuned coarse-grain MD computations (CG MD) offer quantitative agreement with experimental forces. In this paper we address an important methodological aspect of MD modeling, namely the impact of numerical noise generated by random assignments of bead velocities on maximum forces (Fmax) calculated within the CG MD approach. Distributions of CG forces from 2000 MD runs for several model proteins rich in β structures and having folds with increasing complexity are presented. It is shown that Fmax have nearly Gaussian distributions and that values of Fmax for each of those β-structures may vary from 93.2 ± 28.9 pN (neurexin) to 198.3 ± 25.2 pN (fibronectin). The CG unfolding spectra are compared with AA steered MD data and with results of our AFM experiments for modules present in contactin, fibronectin and neurexin. The stability of these proteins is critical for the proper functioning of neuronal synaptic clefts. Our results confirm that CG modeling of a single molecule unfolding is a good auxiliary tool in nanomechanics but large sets of data have to be collected before reliable comparisons of protein mechanical stabilities are made. Computational strechnings of single protein modeules leads to broad distributions of unfolding forces ![]()
Collapse
|
25
|
Chwastyk M, Galera-Prat A, Sikora M, Gómez-Sicilia À, Carrión-Vázquez M, Cieplak M. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins 2014; 82:717-26. [DOI: 10.1002/prot.24436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Mateusz Chwastyk
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED; Av. Doctor Arce, 37 28002 Madrid Spain
| | - Mateusz Sikora
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46 02-668 Warsaw Poland
- Institute of Science and Technology Austria; Klosterneuburg Austria
| | - Àngel Gómez-Sicilia
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED; Av. Doctor Arce, 37 28002 Madrid Spain
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED; Av. Doctor Arce, 37 28002 Madrid Spain
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46 02-668 Warsaw Poland
| |
Collapse
|
26
|
Neupane K, Solanki A, Sosova I, Belov M, Woodside MT. Diverse metastable structures formed by small oligomers of α-synuclein probed by force spectroscopy. PLoS One 2014; 9:e86495. [PMID: 24475132 PMCID: PMC3901707 DOI: 10.1371/journal.pone.0086495] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
Oligomeric aggregates are widely suspected as toxic agents in diseases caused by protein aggregation, yet they remain poorly characterized, partly because they are challenging to isolate from a heterogeneous mixture of species. We developed an assay for characterizing structure, stability, and kinetics of individual oligomers at high resolution and sensitivity using single-molecule force spectroscopy, and applied it to observe the formation of transient structured aggregates within single oligomers of α-synuclein, an intrinsically-disordered protein linked to Parkinson's disease. Measurements of the molecular extension as the proteins unfolded under tension in optical tweezers revealed that even small oligomers could form numerous metastable structures, with a surprisingly broad range of sizes. Comparing the structures formed in monomers, dimers and tetramers, we found that the average mechanical stability increased with oligomer size. Most structures formed within a minute, with size-dependent rates. These results provide a new window onto the complex α-synuclein aggregation landscape, characterizing the microscopic structural heterogeneity and kinetics of different pathways.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Solanki
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Iveta Sosova
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada
| | - Miro Belov
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada
| | - Michael T. Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Cieplak M. Mechanostability of Virus Capsids and Their Proteins in Structure-Based Models. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Scholl ZN, Li Q, Marszalek PE. Single molecule mechanical manipulation for studying biological properties of proteins,
DNA
, and sugars. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:211-29. [DOI: 10.1002/wnan.1253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Zackary N. Scholl
- Department of Computational Biology and Bioinformatics Duke University Durham NC USA
| | - Qing Li
- Department of Mechanical Engineering and Materials Science Duke University Durham NC USA
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems Duke University Durham NC USA
| |
Collapse
|
29
|
Kotamarthi HC, Sharma R, Koti Ainavarapu SR. Single-molecule studies on PolySUMO proteins reveal their mechanical flexibility. Biophys J 2013; 104:2273-81. [PMID: 23708367 DOI: 10.1016/j.bpj.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
Proteins with β-sandwich and β-grasp topologies are resistant to mechanical unfolding as shown by single-molecule force spectroscopy studies. Their high mechanical stability has generally been associated with the mechanical clamp geometry present at the termini. However, there is also evidence for the importance of interactions other than the mechanical clamp in providing mechanical stability, which needs to be tested thoroughly. Here, we report the mechanical unfolding properties of ubiquitin-like proteins (SUMO1 and SUMO2) and their comparison with those of ubiquitin. Although ubiquitin and SUMOs have similar size and structural topology, they differ in their sequences and structural contacts, making them ideal candidates to understand the variations in the mechanical stability of a given protein topology. We observe a two-state unfolding pathway for SUMO1 and SUMO2, similar to that of ubiquitin. Nevertheless, the unfolding forces of SUMO1 (∼130 pN) and SUMO2 (∼120 pN) are lower than that of ubiquitin (∼190 pN) at a pulling speed of 400 nm/s, indicating their lower mechanical stability. The mechanical stabilities of SUMO proteins and ubiquitin are well correlated with the number of interresidue contacts present in their structures. From pulling speed-dependent mechanical unfolding experiments and Monte Carlo simulations, we find that the unfolding potential widths of SUMO1 (∼0.51 nm) and SUMO2 (∼0.33 nm) are much larger than that of ubiquitin (∼0.19 nm), indicating that SUMO1 is six times and SUMO2 is three times mechanically more flexible than ubiquitin. These findings might also be important in understanding the functional differences between ubiquitin and SUMOs.
Collapse
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
30
|
Rico F, Rigato A, Picas L, Scheuring S. Mechanics of proteins with a focus on atomic force microscopy. J Nanobiotechnology 2013; 11 Suppl 1:S3. [PMID: 24565326 PMCID: PMC4029730 DOI: 10.1186/1477-3155-11-s1-s3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The capacity of proteins to function relies on a balance between molecular stability to maintain their folded state and structural flexibility allowing conformational changes related to biological function. Among many others, four different examples can be chosen. The giant protein titin is stretched and can unfold during muscle contraction providing passive elasticity to muscle tissue; myoglobin adsorbs and releases oxygen molecules thank to conformational changes in its structure; the outer membrane protein G (OmpG) is a bacterial porin with a long and flexible loop that modulates gating; and the proton pump bacteriorhodopsin adapts its cytosolic half to allow proton pumping. All these conformational changes triggered either by chemical or by physical cues, require mechanical flexibility or elasticity of certain protein domains. While the methods to determine protein structure, X-ray crystallography above all, have been dramatically improved over the last decades, the number of tools that directly measure the mechanical flexibility of proteins and protein domains is still limited. In this tutorial, after a brief introduction to protein structure, we present some of the available techniques to estimate protein flexibility, then focusing on atomic force microscopy (AFM). We describe the principles of the technique and its various imaging and force spectroscopy modes of operation that allow probing the elasticity of proteins, protein domains and their surrounding environment.
Collapse
|
31
|
Chwastyk M, Jaskolski M, Cieplak M. Structure-based analysis of thermodynamic and mechanical properties of cavity-containing proteins - case study of plant pathogenesis-related proteins of class 10. FEBS J 2013; 281:416-29. [DOI: 10.1111/febs.12611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/09/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
| | - Marek Cieplak
- Institute of Physics; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
32
|
Glyakina AV, Likhachev IV, Balabaev NK, Galzitskaya OV. Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins. Proteins 2013; 82:90-102. [PMID: 23873665 DOI: 10.1002/prot.24373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 11/11/2022]
Abstract
Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | |
Collapse
|
33
|
Li YD, Lamour G, Gsponer J, Zheng P, Li H. The molecular mechanism underlying mechanical anisotropy of the protein GB1. Biophys J 2013; 103:2361-8. [PMID: 23283235 DOI: 10.1016/j.bpj.2012.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022] Open
Abstract
Mechanical responses of elastic proteins are crucial for their biological function and nanotechnological use. Loading direction has been identified as one key determinant for the mechanical responses of proteins. However, it is not clear how a change in pulling direction changes the mechanical unfolding mechanism of the protein. Here, we combine protein engineering, single-molecule force spectroscopy, and steered molecular dynamics simulations to systematically investigate the mechanical response of a small globular protein GB1. Force versus extension profiles from both experiments and simulations reveal marked mechanical anisotropy of GB1. Using native contact analysis, we relate the mechanically robust shearing geometry with concurrent rupture of native contacts. This clearly contrasts the sequential rupture observed in simulations for the mechanically labile peeling geometry. Moreover, we identify multiple distinct mechanical unfolding pathways in two loading directions. Implications of such diverse unfolding mechanisms are discussed. Our results may also provide some insights for designing elastomeric proteins with tailored mechanical properties.
Collapse
Affiliation(s)
- Yongnan Devin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
34
|
Abstract
In the present article, we highlight the diversity of mechanical clamps, some of them topological in nature, that have been found by making surveys of mechanostability of approximately 18000 proteins within structure-based models. The existence of superstable proteins (with the characteristic unfolding force in the region of 1000 pN) is predicted.
Collapse
|
35
|
Sikora M, Cieplak M. Formation of cystine slipknots in dimeric proteins. PLoS One 2013; 8:e57443. [PMID: 23520470 PMCID: PMC3592873 DOI: 10.1371/journal.pone.0057443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
We consider mechanical stability of dimeric and monomeric proteins with the cystine knot motif. A structure based dynamical model is used to demonstrate that all dimeric and some monomeric proteins of this kind should have considerable resistance to stretching that is significantly larger than that of titin. The mechanisms of the large mechanostability are elucidated. In most cases, it originates from the induced formation of one or two cystine slipknots. Since there are four termini in a dimer, there are several ways of selecting two of them to pull by. We show that in the cystine knot systems, there is strong anisotropy in mechanostability and force patterns related to the selection. We show that the thermodynamic stability of the dimers is enhanced compared to the constituting monomers whereas machanostability is either lower or higher.
Collapse
Affiliation(s)
- Mateusz Sikora
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
36
|
The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... plus the structure of the equilibrium intermediates at the same time. Arch Biochem Biophys 2013; 531:4-13. [DOI: 10.1016/j.abb.2012.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/22/2012] [Accepted: 10/28/2012] [Indexed: 11/20/2022]
|
37
|
Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. PLoS Biol 2013; 11:e1001489. [PMID: 23431269 PMCID: PMC3576412 DOI: 10.1371/journal.pbio.1001489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/09/2013] [Indexed: 01/24/2023] Open
Abstract
A single-molecule force study shows that rapid dissociation of a high-affinity protein interaction can be triggered by site-specific remodelling of one protein partner, and that prevention of remodelling maintains avidity. Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. Many proteins interact with other proteins as part of their function. One method of modulating the activity of protein complexes is to break them apart. Some complexes, however, are extremely kinetically stable and it is unclear how these can dissociate on a biologically relevant timescale. In this study we address this question using protein complexes between colicin E9 (a bacterial toxin) and its immunity protein Im9. These highly avid complexes (with a lifetime of days) must be broken apart for colicin to be activated. By using single-molecule force methods we show that pulling on one end of colicin E9 drastically destabilises the complex so that it dissociates a million-fold faster than its intrinsic rate. We then show that preventing this destabilisation (by the insertion of cross-links that pin the N-terminus of E9 in place) yields a kinetically stable complex. It has previously been postulated that force can destabilise a protein complex by partially unfolding one or more binding partners. Our work provides new experimental evidence that shows this is the case and provides a mechanism for this phenomenon, which we term a trip bond. For the E9:Im9 complex, trip bond behaviour allows a stable complex to be rapidly dissociated by application of a surprisingly small force.
Collapse
Affiliation(s)
- Oliver E. Farrance
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Eleanore Hann
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Sasha R. Derrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Hoffmann T, Tych KM, Hughes ML, Brockwell DJ, Dougan L. Towards design principles for determining the mechanical stability of proteins. Phys Chem Chem Phys 2013; 15:15767-80. [DOI: 10.1039/c3cp52142g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Bhattacharyya S, Varadarajan R. Packing in molten globules and native states. Curr Opin Struct Biol 2012; 23:11-21. [PMID: 23270864 DOI: 10.1016/j.sbi.2012.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.
Collapse
|
40
|
Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W. Single-molecule experiments reveal the flexibility of a Per-ARNT-Sim domain and the kinetic partitioning in the unfolding pathway under force. Biophys J 2012; 102:2149-57. [PMID: 22824279 DOI: 10.1016/j.bpj.2012.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022] Open
Abstract
Per-ARNT-Sim (PAS) domains serve as versatile binding motifs in many signal-transduction proteins and are able to respond to a wide spectrum of chemical or physical signals. Despite their diverse functions, PAS domains share a conserved structure. It has been suggested that the structure of PAS domains is flexible and thus adaptable to many binding partners. However, direct measurement of the flexibility of PAS domains has not yet been provided. Here, we quantitatively measure the mechanical unfolding of a PAS domain, ARNT PAS-B, using single-molecule atomic force microscopy. Our force spectroscopy results indicate that the structure of ARNT PAS-B can be unraveled under mechanical forces as low as ~30 pN due to its broad potential well for the mechanical unfolding transition of ~2 nm. This allows the PAS-B domain to extend by up to 75% of its resting end-to-end distance without unfolding. Moreover, we found that the ARNT PAS-B domain unfolds in two distinct pathways via a kinetic partitioning mechanism. Sixty-seven percent of ARNT PAS-B unfolds through a simple two-state pathway, whereas the other 33% unfolds with a well-defined intermediate state in which the C-terminal β-hairpin is detached. We propose that the structural flexibility and force-induced partial unfolding of PAS-B domains may provide a unique mechanism for them to recruit diverse binding partners and lower the free-energy barrier for the formation of the binding interface.
Collapse
Affiliation(s)
- Xiang Gao
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein. Proc Natl Acad Sci U S A 2012; 109:17820-5. [PMID: 22949695 DOI: 10.1073/pnas.1201800109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many biological processes generate force, and proteins have evolved to resist and respond to tension along different force axes. Single-molecule force spectroscopy allows for molecular insight into the behavior of proteins under force and the mechanism of protein folding in general. Here, we have used src SH3 to investigate the effect of different pulling axes under the low-force regime afforded by an optical trap. We find that this small cooperatively folded protein shows an anisotropic response to force; the protein is more mechanically resistant to force applied along a longitudinal axis compared to force applied perpendicular to the terminal β strand. In the longitudinal axis, we observe an unusual biphasic behavior revealing a force-induced switch in the unfolding mechanism suggesting the existence of two parallel unfolding pathways. A site-specific variant can selectively affect one of these pathways. Thus, even this simple two-state protein demonstrates a complex mechanical unfolding trajectory, accessing multiple unfolding pathways under the low-force regime of the optical trap; the specific unfolding pathway depends on the perturbation axis and the applied force.
Collapse
|
42
|
Affiliation(s)
- Elias M. Puchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158;
| | - Hermann E. Gaub
- Center for Nanoscience and Department of Physics, University of Munich, 80799 Munich, Germany;
| |
Collapse
|
43
|
Fang J, Li H. A facile way to tune mechanical properties of artificial elastomeric proteins-based hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8260-8265. [PMID: 22554148 DOI: 10.1021/la301225w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-based hydrogels have attracted considerable interests due to their potential applications in biomedical engineering and material sciences. Using a tandem modular protein (GB1)(8) as building blocks, we have engineered chemically cross-linked hydrogels via a photochemical cross-linking strategy, which is based on the cross-linking of two adjacent tyrosine residues into dityrosine adducts. However, because of the relatively low reactivity of tyrosine residues in GB1, (GB1)(8)-based hydrogels exhibit poor mechanical properties. Here, we report a Bolton-Hunter reagent-based, facile method to improve and tune the mechanical properties of such protein-based hydrogels. Using Bolton-Hunter reagent, we can derivatize lysine residues with phenolic functional groups to modulate the phenolic (tyrosine-like) content of (GB1)(8). We show that hydrogels made from derivatized (GB1)(8) with increased phenolic content show significantly improved mechanical properties, including improved Young's modulus, breaking modulus as well as reduced swelling. These results demonstrate the great potential of this derivatization method in constructing protein-based biomaterials with desired macroscopic mechanical properties.
Collapse
Affiliation(s)
- Jie Fang
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
44
|
Liu N, Zhang W. Feeling Inter- or Intramolecular Interactions with the Polymer Chain as Probe: Recent Progress in SMFS Studies on Macromolecular Interactions. Chemphyschem 2012; 13:2238-56. [DOI: 10.1002/cphc.201200154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 01/30/2023]
|
45
|
Ikeda-Kobayashi A, Taniguchi Y, Brockwell DJ, Paci E, Kawakami M. Prying open single GroES ring complexes by force reveals cooperativity across domains. Biophys J 2012; 102:1961-8. [PMID: 22768953 DOI: 10.1016/j.bpj.2012.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/29/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022] Open
Abstract
Understanding how the mechanical properties of a protein complex emerge from the interplay of intra- and interchain interactions is vital at both fundamental and applied levels. To investigate whether interdomain cooperativity affects protein mechanical strength, we employed single-molecule force spectroscopy to probe the mechanical stability of GroES, a homoheptamer with a domelike quaternary stucture stabilized by intersubunit interactions between the first and last β-strands of adjacent domains. A GroES variant was constructed in which each subunit of the GroES heptamer is covalently linked to adjacent subunits by tripeptide linkers and folded domains of protein L are introduced to the heptamer's termini as handle molecules. The force-distance profiles for GroES unfolding showed, for the first time that we know of, a mechanical phenotype whereby seven distinct force peaks, with alternating behavior of unfolding force and contour length (ΔL(c)), were observed with increasing unfolding-event number. Unfolding of (GroES)(7) is initiated by breakage of the interface between domains 1 and 7 at low force, which imparts a polarity to (GroES)(7) that results in two distinct mechanical phenotypes of these otherwise identical protein domains. Unfolding then proceeds by peeling domains off the domelike native structure by sequential repetition of the denaturation of mechanically weak (unfoldon 1) and strong (unfoldon 2) units. These results indicate that domain-domain interactions help to determine the overall mechanical strength and unfolding pathway of the oligomeric structure. These data reveal an unexpected richness in the mechanical behavior of this homopolyprotein, yielding a complex with greater mechanical strength and properties distinct from those that would be apparent for GroES domains in isolation.
Collapse
Affiliation(s)
- Akiko Ikeda-Kobayashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
46
|
Payet L, Martinho M, Pastoriza-Gallego M, Betton JM, Auvray L, Pelta J, Mathé J. Thermal Unfolding of Proteins Probed at the Single Molecule Level Using Nanopores. Anal Chem 2012; 84:4071-6. [DOI: 10.1021/ac300129e] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linda Payet
- LAMBE, UMR 8587 CNRS-CEA-UEVE, Université d’Évry val d’Essonne, Évry, France
- LAMBE, UMR 8587 CNRS-CEA-UEVE, Université de Cergy-Pontoise, Cergy-Pontoise
Cedex, France
| | - Marlène Martinho
- LAMBE, UMR 8587 CNRS-CEA-UEVE, Université d’Évry val d’Essonne, Évry, France
| | | | - Jean-Michel Betton
- Unité
de Biochimie Structurale, CNRS-URA 3528, Institut Pasteur, Paris, France
| | - Loïc Auvray
- Laboratoire
MSC, CNRS UMR-7057, Université Paris-Diderot, Paris, France
| | - Juan Pelta
- LAMBE, UMR 8587 CNRS-CEA-UEVE, Université d’Évry val d’Essonne, Évry, France
- LAMBE, UMR 8587 CNRS-CEA-UEVE, Université de Cergy-Pontoise, Cergy-Pontoise
Cedex, France
| | - Jérôme Mathé
- LAMBE, UMR 8587 CNRS-CEA-UEVE, Université d’Évry val d’Essonne, Évry, France
| |
Collapse
|
47
|
Feld GK, Brown MJ, Krantz BA. Ratcheting up protein translocation with anthrax toxin. Protein Sci 2012; 21:606-24. [PMID: 22374876 DOI: 10.1002/pro.2052] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/09/2023]
Abstract
Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
48
|
Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 2012; 109:E690-7. [PMID: 22366317 DOI: 10.1073/pnas.1115485109] [Citation(s) in RCA: 1028] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
Collapse
|
49
|
Taniguchi Y, Kobayashi A, Kawakami M. Mechanical unfolding studies of protein molecules. Biophysics (Nagoya-shi) 2012; 8:51-58. [PMID: 27857607 PMCID: PMC5070453 DOI: 10.2142/biophysics.8.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022] Open
Abstract
Atomic force microscopy (AFM) enables the pick up of a single protein molecule to apply a mechanical force. This technique, called "force spectroscopy," provides unique information about the intermediates and free energy landscape of the mechanical unfolding of proteins. In this review, we introduce the AFM-based single molecule force spectroscopy of proteins and describe recent studies that answer some fundamental questions such as "is the mechanical resistance of proteins isotropic?", "what is the structure of the transition state in mechanical unfolding?", and "is mechanical unfolding related to biological functions?"
Collapse
Affiliation(s)
- Yukinori Taniguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1292, Japan
| | - Akiko Kobayashi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1292, Japan
| | - Masaru Kawakami
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1292, Japan
| |
Collapse
|
50
|
Lu W, Negi SS, Oberhauser AF, Braun W. Engineering proteins with enhanced mechanical stability by force-specific sequence motifs. Proteins 2012; 80:1308-15. [PMID: 22274941 DOI: 10.1002/prot.24027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 01/02/2012] [Indexed: 11/09/2022]
Abstract
Use of atomic force microscopy (AFM) has recently led to a better understanding of the molecular mechanisms of the unfolding process by mechanical forces; however, the rational design of novel proteins with specific mechanical strength remains challenging. We have approached this problem from a new perspective that generates linear physical-chemical properties (PCP) motifs from a limited AFM data set. Guided by our linear sequence analysis, we designed and analyzed four new mutants of the titin I1 domain with the goal of increasing the domain's mechanical strength. All four mutants could be cloned and expressed as soluble proteins. AFM data indicate that at least two of the mutants have increased molecular mechanical strength. This observation suggests that the PCP method is useful to graft sequences specific for high mechanical stability to weak proteins to increase their mechanical stability, and represents an additional tool in the design of novel proteins besides steered molecular dynamics calculations, coarse grained simulations, and ϕ-value analysis of the transition state.
Collapse
Affiliation(s)
- Wenzhe Lu
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA
| | | | | | | |
Collapse
|