1
|
Dixit B, Vranken W, Ghysels A. Conformational dynamics of α-1 acid glycoprotein (AGP) in cancer: A comparative study of glycosylated and unglycosylated AGP. Proteins 2024; 92:246-264. [PMID: 37837263 DOI: 10.1002/prot.26607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
α-1 acid glycoprotein (AGP) is one of the most abundant plasma proteins. It fulfills two important functions: immunomodulation, and binding to various drugs and receptors. These different functions are closely associated and modulated via changes in glycosylation and cancer missense mutations. From a structural point of view, glycans alter the local biophysical properties of the protein leading to a diverse ligand-binding spectrum. However, glycans can typically not be observed in the resolved X-ray crystallography structure of AGP due to their high flexibility and microheterogeneity, so limiting our understanding of AGP's conformational dynamics 70 years after its discovery. We here investigate how mutations and glycosylation interfere with AGP's conformational dynamics changing its biophysical behavior, by using molecular dynamics (MD) simulations and sequence-based dynamics predictions. The MD trajectories show that glycosylation decreases the local backbone flexibility of AGP and increases the flexibility of distant regions through allosteric effects. We observe that mutations near the glycosylation site affect glycan's conformational preferences. Thus, we conclude that mutations control glycan dynamics which modulates the protein's backbone flexibility directly affecting its accessibility. These findings may assist in the drug design targeting AGP's glycosylation and mutations in cancer.
Collapse
Affiliation(s)
- Bhawna Dixit
- IBiTech-BioMMeda Group, Ghent University, Ghent, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - An Ghysels
- IBiTech-BioMMeda Group, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Yamaguchi Y, Yamaguchi T, Kato K. Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR. ADVANCES IN NEUROBIOLOGY 2023; 29:163-184. [PMID: 36255675 DOI: 10.1007/978-3-031-12390-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbohydrate chains play critical roles in cellular recognition and subsequent signal transduction in the nervous system. Furthermore, gangliosides are targets for various amyloidogenic proteins associated with neurodegenerative disorders. To better understand the molecular mechanisms underlying these biological phenomena, atomic views are essential to delineate dynamic biomolecular interactions. Nuclear magnetic resonance (NMR) spectroscopy provides powerful tools for studying structures, dynamics, and interactions of biomolecules at the atomic level. This chapter describes the basics of solution NMR techniques and their applications to the analysis of 3D structures and interactions of glycoconjugates in the nervous system.
Collapse
Affiliation(s)
- Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Takumi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan.
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
3
|
Nance ML, Labonte JW, Adolf-Bryfogle J, Gray JJ. Development and Evaluation of GlycanDock: A Protein-Glycoligand Docking Refinement Algorithm in Rosetta. J Phys Chem B 2021; 125:10.1021/acs.jpcb.1c00910. [PMID: 34133179 PMCID: PMC8742512 DOI: 10.1021/acs.jpcb.1c00910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrate chains are ubiquitous in the complex molecular processes of life. These highly diverse chains are recognized by a variety of protein receptors, enabling glycans to regulate many biological functions. High-resolution structures of protein-glycoligand complexes reveal the atomic details necessary to understand this level of molecular recognition and inform application-focused scientific and engineering pursuits. When experimental challenges hinder high-throughput determination of quality structures, computational tools can, in principle, fill the gap. In this work, we introduce GlycanDock, a residue-centric protein-glycoligand docking refinement algorithm developed within the Rosetta macromolecular modeling and design software suite. We performed a benchmark docking assessment using a set of 109 experimentally determined protein-glycoligand complexes as well as 62 unbound protein structures. The GlycanDock algorithm can sample and discriminate among protein-glycoligand models of native-like structural accuracy with statistical reliability from starting structures of up to 7 Å root-mean-square deviation in the glycoligand ring atoms. We show that GlycanDock-refined models qualitatively replicated the known binding specificity of a bacterial carbohydrate-binding module. Finally, we present a protein-glycoligand docking pipeline for generating putative protein-glycoligand complexes when only the glycoligand sequence and unbound protein structure are known. In combination with other carbohydrate modeling tools, the GlycanDock docking refinement algorithm will accelerate research in the glycosciences.
Collapse
Affiliation(s)
- Morgan L. Nance
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17603, United States
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Jared Adolf-Bryfogle
- Protein Design Lab, Institute for Protein Innovation, Boston, Massachusetts 02115, United States
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jeffrey J. Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
5
|
del Hierro I, Mélida H, Broyart C, Santiago J, Molina A. Computational prediction method to decipher receptor-glycoligand interactions in plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1710-1726. [PMID: 33316845 PMCID: PMC8048873 DOI: 10.1111/tpj.15133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Microbial and plant cell walls have been selected by the plant immune system as a source of microbe- and plant damage-associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD-PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM-PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4-β-d-(GlcNAc)6 ) and laminarihexaose (1,3-β-d-(Glc)6 ). Our in silico results predicted CERK1 interactions with 1,4-β-d-(GlcNAc)6 whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co-receptor for its recognition. These in silico results were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs-LysM-PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4-β-d-(Glc)6 (cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsis cerk1 mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein-glycan interactions and provide information on immune responses activated by glycoligands.
Collapse
Affiliation(s)
- Irene del Hierro
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Present address:
Área de Fisiología VegetalDepartamento de Ingeniería y Ciencias AgrariasUniversidad de León24071LeónSpain
| | - Caroline Broyart
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Julia Santiago
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| |
Collapse
|
6
|
Scherbinina SI, Toukach PV. Three-Dimensional Structures of Carbohydrates and Where to Find Them. Int J Mol Sci 2020; 21:E7702. [PMID: 33081008 PMCID: PMC7593929 DOI: 10.3390/ijms21207702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.
Collapse
Affiliation(s)
- Sofya I. Scherbinina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Philip V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
7
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Feng X, Li F, Ding M, Zhang R, Shi T. Molecular dynamic simulation: Conformational properties of single-stranded curdlan in aqueous solution. Carbohydr Polym 2020; 250:116906. [PMID: 33049882 DOI: 10.1016/j.carbpol.2020.116906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Recently, molecular dynamic simulation technique has been proved to be a powerful tool providing structural insights for better understanding the functionality of carbohydrates. Here, by using molecular dynamic simulation method we investigated the detailed conformational properties of the single-stranded curdlan with 12 glucose units. The results showed that the right-handed 6/1 helix structure was thermodynamically the most stable conformation in solution. The formation of the helix conformation was determined by many factors such as the glycosidic linkage, explicit water solvation and hydrogen bonds. When temperature was increased, the representative helix conformation was found becoming unstable giving rise to metastable conformations because when water mobility was accelerated with temperature, the hydrogen bonding strength between the curdlan chain and water went down, breaking the continuity of the hydrogen bonding network of water and hydroxyl groups. When the number of repeating glucose units varied from 6 to 24, the major helix conformation remained, but the conformational properties of longer chains were more apparently aff ;ected by chain flexibility.
Collapse
Affiliation(s)
- Xuan Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Fan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
9
|
Mucha E, Stuckmann A, Marianski M, Struwe WB, Meijer G, Pagel K. In-depth structural analysis of glycans in the gas phase. Chem Sci 2019; 10:1272-1284. [PMID: 30809341 PMCID: PMC6357860 DOI: 10.1039/c8sc05426f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of m/z, collision cross sections and IR fingerprints can be obtained. This multidimensional data will then be compared to a comprehensive reference library of intact glycans and their fragments to accurately identify unknown glycans on a high-throughput scale with minimal sample requirements. Due to the complementarity of the obtained information, this novel approach is highly diagnostic and also suitable for the identification of larger glycans; however, the workflow and instrumentation is straightforward enough to be implemented into a user-friendly setup.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Alexandra Stuckmann
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mateusz Marianski
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Weston B Struwe
- Oxford Glycobiology Institute , Department of Biochemistry , University of Oxford , OX1 3QU Oxford , UK
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
10
|
Kunstmann S, Gohlke U, Broeker NK, Roske Y, Heinemann U, Santer M, Barbirz S. Solvent Networks Tune Thermodynamics of Oligosaccharide Complex Formation in an Extended Protein Binding Site. J Am Chem Soc 2018; 140:10447-10455. [DOI: 10.1021/jacs.8b03719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonja Kunstmann
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ulrich Gohlke
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Nina K. Broeker
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Yvette Roske
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität, Takustr. 6, 14195 Berlin, Germany
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Stefanie Barbirz
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Molecular Dynamics of Gangliosides. Methods Mol Biol 2018. [PMID: 29926421 DOI: 10.1007/978-1-4939-8552-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Computational methodologies have immense potential to delineate the dynamic conformations of glycoconjugates including gangliosides, thereby characterizing the conformational adaptability of their glycans upon interacting with various target proteins. Replica-exchange molecular dynamics simulations have been employed to effectively explore the vast conformational spaces of large, branched carbohydrate moieties. When experimentally validated using NMR, molecular simulations can provide dynamical views of molecular recognition events involving the ganglioside glycans.
Collapse
|
12
|
Alibay I, Burusco KK, Bruce NJ, Bryce RA. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics. J Phys Chem B 2018; 122:2462-2474. [PMID: 29419301 DOI: 10.1021/acs.jpcb.7b09841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4C1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.
Collapse
Affiliation(s)
- Irfan Alibay
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Kepa K Burusco
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Neil J Bruce
- Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35 , Heidelberg 69118 , Germany
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
13
|
Nagarajan B, Sankaranarayanan NV, Patel BB, Desai UR. A molecular dynamics-based algorithm for evaluating the glycosaminoglycan mimicking potential of synthetic, homogenous, sulfated small molecules. PLoS One 2017; 12:e0171619. [PMID: 28182755 PMCID: PMC5300208 DOI: 10.1371/journal.pone.0171619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 01/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) are key natural biopolymers that exhibit a range of biological functions including growth and differentiation. Despite this multiplicity of function, natural GAG sequences have not yielded drugs because of problems of heterogeneity and synthesis. Recently, several homogenous non-saccharide glycosaminoglycan mimetics (NSGMs) have been reported as agents displaying major therapeutic promise. Yet, it remains unclear whether sulfated NSGMs structurally mimic sulfated GAGs. To address this, we developed a three-step molecular dynamics (MD)-based algorithm to compare sulfated NSGMs with GAGs. In the first step of this algorithm, parameters related to the range of conformations sampled by the two highly sulfated molecules as free entities in water were compared. The second step compared identity of binding site geometries and the final step evaluated comparable dynamics and interactions in the protein-bound state. Using a test case of interactions with fibroblast growth factor-related proteins, we show that this three-step algorithm effectively predicts the GAG structure mimicking property of NSGMs. Specifically, we show that two unique dimeric NSGMs mimic hexameric GAG sequences in the protein-bound state. In contrast, closely related monomeric and trimeric NSGMs do not mimic GAG in either the free or bound states. These results correspond well with the functional properties of NSGMs. The results show for the first time that appropriately designed sulfated NSGMs can be good structural mimetics of GAGs and the incorporation of a MD-based strategy at the NSGM library screening stage can identify promising mimetics of targeted GAG sequences.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Bhaumik B. Patel
- Hunter Holmes Muire VA Medical Center, Richmond, Virginia, United States of America
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
14
|
Li X, Grant OC, Ito K, Wallace A, Wang S, Zhao P, Wells L, Lu S, Woods RJ, Sharp JS. Structural Analysis of the Glycosylated Intact HIV-1 gp120-b12 Antibody Complex Using Hydroxyl Radical Protein Footprinting. Biochemistry 2017; 56:957-970. [PMID: 28102671 PMCID: PMC5319886 DOI: 10.1021/acs.biochem.6b00888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycoprotein gp120
is a surface antigen and virulence factor of
human immunodeficiency virus 1. Broadly neutralizing antibodies (bNAbs)
that react to gp120 from a variety of HIV isolates offer hope for
the development of broadly effective immunogens for vaccination purposes,
if the interactions between gp120 and bNAbs can be understood. From
a structural perspective, gp120 is a particularly difficult system
because of its size, the presence of multiple flexible regions, and
the large amount of glycosylation, all of which are important in gp120–bNAb
interactions. Here, the interaction of full-length, glycosylated gp120
with bNAb b12 is probed using high-resolution hydroxyl radical protein
footprinting (HR-HRPF) by fast photochemical oxidation of proteins.
HR-HRPF allows for the measurement of changes in the average solvent
accessible surface area of multiple amino acids without the need for
measures that might alter the protein conformation, such as mutagenesis.
HR-HRPF of the gp120–b12 complex coupled with computational
modeling shows a novel extensive interaction of the V1/V2 domain,
probably with the light chain of b12. Our data also reveal HR-HRPF
protection in the C3 domain caused by interaction of the N330 glycan
with the b12 light chain. In addition to providing information about
the interactions of full-length, glycosylated gp120 with b12, this
work serves as a template for the structural interrogation of full-length
glycosylated gp120 with other bNAbs to better characterize the interactions
that drive the broad specificity of the bNAb.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Keigo Ito
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi , University, Mississippi 38677, United States
| |
Collapse
|
15
|
Montgomery AP, Xiao K, Wang X, Skropeta D, Yu H. Computational Glycobiology: Mechanistic Studies of Carbohydrate-Active Enzymes and Implication for Inhibitor Design. STRUCTURAL AND MECHANISTIC ENZYMOLOGY 2017; 109:25-76. [DOI: 10.1016/bs.apcsb.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Complex carbohydrate recognition by proteins: Fundamental insights from bacteriophage cell adhesion systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.pisc.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Barra PA, Ribeiro AJM, Ramos MJ, Jiménez VA, Alderete JB, Fernandes PA. Binding free energy calculations on E-selectin complexes with sLex
oligosaccharide analogs. Chem Biol Drug Des 2016; 89:114-123. [DOI: 10.1111/cbdd.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Pabla A. Barra
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | | | - Maria J. Ramos
- Faculdade de Ciencias; Universidad do Porto; Porto Portugal
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas; Facultad de Ciencias Exactas; Universidad Andres Bello Sede Concepción; Talcahuano Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | | |
Collapse
|
18
|
Kang Y, Gohlke U, Engström O, Hamark C, Scheidt T, Kunstmann S, Heinemann U, Widmalm G, Santer M, Barbirz S. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein–Polysaccharide Interactions. J Am Chem Soc 2016; 138:9109-18. [DOI: 10.1021/jacs.6b00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yu Kang
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ulrich Gohlke
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Olof Engström
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106
91 Stockholm, Sweden
| | - Christoffer Hamark
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106
91 Stockholm, Sweden
| | - Tom Scheidt
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Sonja Kunstmann
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut
für Chemie und Biochemie, Freie Universität, Takustr. 6, 14195 Berlin, Germany
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106
91 Stockholm, Sweden
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Stefanie Barbirz
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
19
|
Xu X, Liu W, Zhong J, Luo L, Liu C, Luo S, Chen L. Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes. Int J Biol Macromol 2015; 81:942-50. [PMID: 26416238 DOI: 10.1016/j.ijbiomac.2015.09.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/28/2023]
Abstract
The interaction of rice glutelin (RG) with amylose was characterized by spectroscopic and molecular docking studies. The intrinsic fluorescence of RG increased upon the addition of amylose. The binding sites, binding constant and thermodynamic features indicated that binding process was spontaneous and the main driving force of the interaction was hydrophobic interaction. The surface hydrophobicity of RG decreased with increasing amount of amylose. Furthermore, synchronous fluorescence and circular dichroism (CD) spectra provided data concerning conformational and micro-environmental changes of RG. With the concentration of amylose increasing, the polarity around the tyrosine residues increased while the hydrophobicity decreased. Alteration of protein conformation was observed with increasing of α-helix and reducing of β-sheet. Finally, a visual representation of two binding sites located in the amorphous area of RG was presented by molecular modeling studies.
Collapse
Affiliation(s)
- Xingfeng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Junzhen Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Liping Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Lin Chen
- Golden Agriculture Biotech Company Limited, No. 100 Xinzhou Road, Nanchang 330000, Jiangxi, China
| |
Collapse
|
20
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
21
|
Guvench O. Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation. Front Immunol 2015; 6:305. [PMID: 26136744 PMCID: PMC4468915 DOI: 10.3389/fimmu.2015.00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
The extracellular N-terminal hyaluronan binding domain (HABD) of CD44 is a small globular domain that confers hyaluronan (HA) binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA-binding site from a low affinity to a high affinity state; in the partially disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy , Portland, ME , USA
| |
Collapse
|
22
|
Ardèvol A, Rovira C. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J Am Chem Soc 2015; 137:7528-47. [DOI: 10.1021/jacs.5b01156] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Albert Ardèvol
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Departament
de Química Orgànica and Institut de Química Teòrica
i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
23
|
Arnautova Y, Abagyan R, Totrov M. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins. J Chem Theory Comput 2015; 11:2167-2186. [PMID: 25999804 PMCID: PMC4431507 DOI: 10.1021/ct501138c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 01/24/2023]
Abstract
We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N-acetylglucosamine, N-acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran-cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1-12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide-monosaccharide and protein-glycan linkages are derived from the extensive analysis of conformational properties of glycoprotein structures reported in the Protein Data Bank. Use of the BPMC search leads to significant improvements in sampling efficiency for glycan simulations. Moreover, good agreement with the X-ray glycoprotein structures is achieved for all glycan chain lengths. Thus, average/median RMSDs are 0.81/0.68 Å for one-residue glycans and 1.32/1.47 Å for three-residue glycans. RMSD from the native structure for the lowest-energy conformation of the 12-residue glycan chain (PDB ID 3og2) is 1.53 Å. Additionally, results obtained for free short oligosaccharides using the new force field are in line with the available experimental data, i.e., the most populated conformations in solution are predicted to be the lowest energy ones. The newly developed parameters allow for the accurate modeling of linear and branched hexopyranose glycosides in heterogeneous systems.
Collapse
Affiliation(s)
- Yelena
A. Arnautova
- Molsoft
L.L.C., 11199 Sorrento
Valley Road, S209, San Diego, California 92121, United States
| | - Ruben Abagyan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Maxim Totrov
- Molsoft
L.L.C., 11199 Sorrento
Valley Road, S209, San Diego, California 92121, United States
| |
Collapse
|
24
|
Computational tools for epitope vaccine design and evaluation. Curr Opin Virol 2015; 11:103-12. [PMID: 25837467 DOI: 10.1016/j.coviro.2015.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Rational approaches will be required to develop universal vaccines for viral pathogens such as human immunodeficiency virus, hepatitis C virus, and influenza, for which empirical approaches have failed. The main objective of a rational vaccine strategy is to design novel immunogens that are capable of inducing long-term protective immunity. In practice, this requires structure-based engineering of the target neutralizing epitopes and a quantitative readout of vaccine-induced immune responses. Therefore, computational tools that can facilitate these two areas have played increasingly important roles in rational vaccine design in recent years. Here we review the computational techniques developed for protein structure prediction and antibody repertoire analysis, and demonstrate how they can be applied to the design and evaluation of epitope vaccines.
Collapse
|
25
|
Kong L, Wilson IA, Kwong PD. Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262. Proteins 2015; 83:590-6. [PMID: 25546301 PMCID: PMC4409329 DOI: 10.1002/prot.24747] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/10/2014] [Indexed: 01/27/2023]
Abstract
The crystal structure of a fully glycosylated HIV-1 gp120 core in complex with CD4 receptor and Fab 17b at 4.5-Å resolution reveals 9 of the 15 N-linked glycans of core gp120 to be partially ordered. The glycan at position Asn262 had the most extensive and well-ordered electron density, and a GlcNAc(2)Man(7) was modeled. The GlcNAc stem of this glycan is largely buried in a cleft in gp120, suggesting a role in gp120 folding and stability. Its arms interact with the stems of neighboring glycans from the oligomannose patch, which is a major target for broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Leopold Kong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Baker CM. Polarizable force fields for molecular dynamics simulations of biomolecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1215] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Force fields and scoring functions for carbohydrate simulation. Carbohydr Res 2015; 401:73-81. [DOI: 10.1016/j.carres.2014.10.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
|
28
|
Hadden JA, Tessier MB, Fadda E, Woods RJ. Calculating binding free energies for protein-carbohydrate complexes. Methods Mol Biol 2015; 1273:431-65. [PMID: 25753724 DOI: 10.1007/978-1-4939-2343-4_26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A variety of computational techniques may be applied to compute theoretical binding free energies for protein-carbohydrate complexes. Elucidation of the intermolecular interactions, as well as the thermodynamic effects, that contribute to the relative strength of receptor binding can shed light on biomolecular recognition, and the resulting initiation or inhibition of a biological process. Three types of free energy methods are discussed here, including MM-PB/GBSA, thermodynamic integration, and a non-equilibrium alternative utilizing SMD. Throughout this chapter, the well-known concanavalin A lectin is employed as a model system to demonstrate the application of these methods to the special case of carbohydrate binding.
Collapse
Affiliation(s)
- Jodi A Hadden
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
29
|
Frank M. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations. Methods Mol Biol 2015; 1273:359-77. [PMID: 25753720 DOI: 10.1007/978-1-4939-2343-4_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).
Collapse
Affiliation(s)
- Martin Frank
- Biognos AB, Generatorsgatan 1, 41705, Göteborg, Sweden,
| |
Collapse
|
30
|
Carbohydrate Microarrays. POLYSACCHARIDES 2015. [PMCID: PMC7123348 DOI: 10.1007/978-3-319-16298-0_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates, like nucleic acids and proteins, are essential biological molecules. Owing to their intrinsic physicochemical properties, carbohydrates are capable of generating structural diversity in a multitude of ways and are prominently displayed on the surfaces of cell membranes or on the exposed regions of macromolecules. Recent studies highlight that carbohydrate moieties are critical for molecular recognition, cell-cell interactions, and cell signaling in many physiological and pathological processes, and for biocommunication between microbes and host species. Modern carbohydrate microarrays emerged in 2002 and brought in new high-throughput tools for “glyco code” exploration. In this section, some basic concepts of sugar chain diversity, glyco-epitope recognition, and the evolving area of glyco-epitomics and biomarker discovery are discussed. Two complementary technologies, carbohydrate antigen arrays and photogenerated glyco-chips, serve as models to illustrate how to apply carbohydrate microarrays to address biomedical questions.
Collapse
|
31
|
Computerized Models of Carbohydrates. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Pérez S, Sarkar A, Rivet A, Breton C, Imberty A. Glyco3D: a portal for structural glycosciences. Methods Mol Biol 2015; 1273:241-258. [PMID: 25753716 DOI: 10.1007/978-1-4939-2343-4_18] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present work describes, in a detailed way, a family of databases covering the three-dimensional features of monosaccharides, disaccharides, oligosaccharides, polysaccharides, glycosyltransferases, lectins, monoclonal antibodies against carbohydrates, and glycosaminoglycan-binding proteins. These databases have been developed with non-proprietary software, and they are open freely to the scientific community. They are accessible through the common portal called "Glyco3D" http://www.glyco3d.cermav.cnrs.fr. The databases are accompanied by a user-friendly graphical user interface (GUI) which offers several search options. All three-dimensional structures are available for visual consultations (with basic measurements possibilities) and can be downloaded in commonly used formats for further uses.
Collapse
Affiliation(s)
- Serge Pérez
- Centre de Recherches sur les Macromolécules Végétales, UPR5301, CNRS - Université Grenoble Alpes, BP53, 38041, Grenoble cédex 09, France
| | | | | | | | | |
Collapse
|
33
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
34
|
Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol 2014; 5:492. [PMID: 25368613 PMCID: PMC4202792 DOI: 10.3389/fimmu.2014.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Queen's University , Kingston, ON , Canada ; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| |
Collapse
|
35
|
|
36
|
Makeneni S, Ji Y, Watson DC, Young NM, Woods RJ. Predicting the Origins of Anti-Blood Group Antibody Specificity: A Case Study of the ABO A- and B-Antigens. Front Immunol 2014; 5:397. [PMID: 25202309 PMCID: PMC4141161 DOI: 10.3389/fimmu.2014.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
The ABO blood group system is the most important blood type system in human transfusion medicine. Here, we explore the specificity of antibody recognition toward ABO blood group antigens using computational modeling and biolayer interferometry. Automated docking and molecular dynamics simulations were used to explore the origin of the specificity of an anti-blood group A antibody variable fragment (Fv AC1001). The analysis predicts a number of Fv-antigen interactions that contribute to affinity, including a hydrogen bond between a HisL49 and the carbonyl moiety of the GalNAc in antigen A. This interaction was consistent with the dependence of affinity on pH, as measured experimentally; at lower pH there is an increase in binding affinity. Binding energy calculations provide unique insight into the origin of interaction energies at a per-residue level in both the scFv and the trisaccharide antigen. The calculations indicate that while the antibody can accommodate both blood group A and B antigens in its combining site, the A antigen is preferred by 4 kcal/mol, consistent with the lack of binding observed for the B antigen.
Collapse
Affiliation(s)
- Spandana Makeneni
- Complex Carbohydrate Research Center, University of Georgia , Athens, GA , USA
| | - Ye Ji
- Complex Carbohydrate Research Center, University of Georgia , Athens, GA , USA
| | - David C Watson
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON , Canada
| | - N Martin Young
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON , Canada
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia , Athens, GA , USA ; School of Chemistry, National University of Ireland , Galway , Ireland
| |
Collapse
|
37
|
The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1130-45. [DOI: 10.1016/j.bbalip.2013.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022]
|
38
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
39
|
Nivedha AK, Makeneni S, Foley BL, Tessier MB, Woods RJ. Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff. J Comput Chem 2014; 35:526-39. [PMID: 24375430 PMCID: PMC3936473 DOI: 10.1002/jcc.23517] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/14/2013] [Accepted: 11/24/2013] [Indexed: 11/10/2022]
Abstract
Docking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop a set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the protein data bank. Addition of CHI energies to the standard docking scores in Autodock 3, 4.2, and Vina consistently improves pose ranking of oligosaccharides docked to a set of anticarbohydrate antibodies. The CHI energy functions are also independent of docking algorithm, and with minor modifications, may be incorporated into both theoretical modeling methods, and experimental NMR or X-ray structure refinement programs.
Collapse
Affiliation(s)
- Anita K. Nivedha
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - Spandana Makeneni
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - B. Lachele Foley
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
| | - Robert J. Woods
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30606
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
40
|
Wang D. Glyco-epitope Diversity: An Evolving Area of Glycomics Research and Biomarker Discovery. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2014; 7:23539. [PMID: 25378871 PMCID: PMC4219575 DOI: 10.4172/jpb.10000e24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA, USA
| |
Collapse
|
41
|
Wang D, Tang J, Wolfinger RD, Carroll GT. Carbohydrate Microarrays. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_35-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Abstract
Dynamical behaviors of glycosaminoglycans, as here illustrated with a hyaluronan oligosaccharide, are key regulators of biological functions.
Collapse
Affiliation(s)
- Vitor H. Pomin
- Program of Glycobiology
- Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho
- Federal University of Rio de Janeiro
- Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Wood NT, Fadda E, Davis R, Grant OC, Martin JC, Woods RJ, Travers SA. The influence of N-linked glycans on the molecular dynamics of the HIV-1 gp120 V3 loop. PLoS One 2013; 8:e80301. [PMID: 24303005 PMCID: PMC3841175 DOI: 10.1371/journal.pone.0080301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
N-linked glycans attached to specific amino acids of the gp120 envelope trimer of a HIV virion can modulate the binding affinity of gp120 to CD4, influence coreceptor tropism, and play an important role in neutralising antibody responses. Because of the challenges associated with crystallising fully glycosylated proteins, most structural investigations have focused on describing the features of a non-glycosylated HIV-1 gp120 protein. Here, we use a computational approach to determine the influence of N-linked glycans on the dynamics of the HIV-1 gp120 protein and, in particular, the V3 loop. We compare the conformational dynamics of a non-glycosylated gp120 structure to that of two glycosylated gp120 structures, one with a single, and a second with five, covalently linked high-mannose glycans. Our findings provide a clear illustration of the significant effect that N-linked glycosylation has on the temporal and spatial properties of the underlying protein structure. We find that glycans surrounding the V3 loop modulate its dynamics, conferring to the loop a marked propensity towards a more narrow conformation relative to its non-glycosylated counterpart. The conformational effect on the V3 loop provides further support for the suggestion that N-linked glycosylation plays a role in determining HIV-1 coreceptor tropism.
Collapse
Affiliation(s)
- Natasha T. Wood
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| | - Elisa Fadda
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Ireland
| | - Robert Davis
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
| | - Oliver C. Grant
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Joanne C. Martin
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Robert J. Woods
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Simon A. Travers
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
44
|
Malaspina A, Collins BS, Dell A, Alter G, Onami TM. Conference report: "Functional Glycomics in HIV Type 1 Vaccine Design" workshop report, Bethesda, Maryland, April 30-May 1, 2012. AIDS Res Hum Retroviruses 2013; 29:1407-17. [PMID: 23767872 DOI: 10.1089/aid.2013.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A vital part of the renewed hope for a vaccine against the human immunodeficiency virus (HIV-1) is based on recent studies that have highlighted major sites of HIV-1 vulnerability that could be effectively targeted by a preventive vaccine. One of these potential vulnerabilities includes the dense cluster of carbohydrates surrounding HIV-1's envelope glycoproteins gp120 and gp41, typically referred to as the "glycan shield." Recent data from several laboratories have shown that glycans on the HIV-1 envelope form key epitopes for broadly neutralizing antibodies (bNAb). Moreover, HIV-1 envelope glycans play an important role in viral transmission, antigenicity, and immunogenicity. The recent availability of novel tools and technologies has now allowed investigators to leverage glycomic structure-function relationships in the design of candidate HIV-1 vaccines. Additionally, glycans modulate the immune response, playing an essential role in Fc receptor and complement activity. To promote cross-disciplinary collaboration and promote synergistic HIV-1- glycomics research, the National Institutes of Health (NIH) cosponsored and convened a 1.5-day workshop entitled "Functional Glycomics in HIV-1 Vaccine Design." The meeting focused on the role of glycan interactions with neutralizing antibodies, the influence of immunoglobulin G (IgG) Fc receptor glycosylation, newly available glycomics technologies, and how new information on the role of glycans could be applied in HIV-1 immunogen design strategies. This report summarizes the discussions of this workshop.
Collapse
Affiliation(s)
- Angela Malaspina
- Preclinical Research and Development Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Brenda S. Collins
- HJF-DAIDS, a Division of The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, Maryland
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts
| | - Thandi M. Onami
- Vaccine Clinical Research Branch, Division of AIDS, U.S. National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
45
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
46
|
Abstract
Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.
Collapse
|
47
|
Toukach FV, Ananikov VP. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev 2013; 42:8376-415. [DOI: 10.1039/c3cs60073d] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Gauto DF, Petruk AA, Modenutti CP, Blanco JI, Di Lella S, Martí MA. Solvent structure improves docking prediction in lectin-carbohydrate complexes. Glycobiology 2012; 23:241-58. [PMID: 23089616 DOI: 10.1093/glycob/cws147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recognition and complex formation between proteins and carbohydrates is a key issue in many important biological processes. Determination of the three-dimensional structure of such complexes is thus most relevant, but particularly challenging because of their usually low binding affinity. In silico docking methods have a long-standing tradition in predicting protein-ligand complexes, and allow a potentially fast exploration of a number of possible protein-carbohydrate complex structures. However, determining which of these predicted complexes represents the correct structure is not always straightforward. In this work, we present a modification of the scoring function provided by AutoDock4, a widely used docking software, on the basis of analysis of the solvent structure adjacent to the protein surface, as derived from molecular dynamics simulations, that allows the definition and characterization of regions with higher water occupancy than the bulk solvent, called water sites. They mimic the interaction held between the carbohydrate -OH groups and the protein. We used this information for an improved docking method in relation to its capacity to correctly predict the protein-carbohydrate complexes for a number of tested proteins, whose ligands range in size from mono- to tetrasaccharide. Our results show that the presented method significantly improves the docking predictions. The resulting solvent-structure-biased docking protocol, therefore, appears as a powerful tool for the design and optimization of development of glycomimetic drugs, while providing new insights into protein-carbohydrate interactions. Moreover, the achieved improvement also underscores the relevance of the solvent structure to the protein carbohydrate recognition process.
Collapse
Affiliation(s)
- Diego F Gauto
- Departamento de Química Inorgánica, Analítica y Química Física, CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
49
|
Foley BL, Tessier MB, Woods RJ. Carbohydrate force fields. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2012; 2:652-697. [PMID: 25530813 PMCID: PMC4270206 DOI: 10.1002/wcms.89] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion.
Collapse
Affiliation(s)
- B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
50
|
Lütteke T. The use of glycoinformatics in glycochemistry. Beilstein J Org Chem 2012; 8:915-29. [PMID: 23015842 PMCID: PMC3388882 DOI: 10.3762/bjoc.8.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/29/2012] [Indexed: 01/10/2023] Open
Abstract
Glycoinformatics is a small but growing branch of bioinformatics and chemoinformatics. Various resources are now available that can be of use to glycobiologists, but also to chemists who work on the synthesis or analysis of carbohydrates. This article gives an overview of existing glyco-specific databases and tools, with a focus on their application to glycochemistry: Databases can provide information on candidate glycan structures for synthesis, or on glyco-enzymes that can be used to synthesize carbohydrates. Statistical analyses of glycan databases help to plan glycan synthesis experiments. 3D-Structural data of protein-carbohydrate complexes are used in targeted drug design, and tools to support glycan structure analysis aid with quality control. Specific problems of glycoinformatics compared to bioinformatics for genomics or proteomics, especially concerning integration and long-term maintenance of the existing glycan databases, are also discussed.
Collapse
Affiliation(s)
- Thomas Lütteke
- Justus-Liebig-University Gießen, Institute of Veterinary Physiology and Biochemistry, Frankfurter Str. 100, 35392 Gießen, Germany
| |
Collapse
|