1
|
Thiel BC, Bussi G, Poblete S, Hofacker IL. Sampling globally and locally correct RNA 3D structures using Ernwin, SPQR and experimental SAXS data. Nucleic Acids Res 2024; 52:e73. [PMID: 39021350 PMCID: PMC11381333 DOI: 10.1093/nar/gkae602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
The determination of the three-dimensional structure of large RNA macromolecules in solution is a challenging task that often requires the use of several experimental and computational techniques. Small-angle X-ray scattering can provide insight into some geometrical properties of the probed molecule, but this data must be properly interpreted in order to generate a three-dimensional model. Here, we propose a multiscale pipeline which introduces SAXS data into modelling the global shape of RNA in solution, which can be hierarchically refined until reaching atomistic precision in explicit solvent. The low-resolution helix model (Ernwin) deals with the exploration of the huge conformational space making use of the SAXS data, while a nucleotide-level model (SPQR) removes clashes and disentangles the proposed structures, leading the structure to an all-atom representation in explicit water. We apply the procedure on four different known pdb structures up to 159 nucleotides with promising results. Additionally, we predict an all-atom structure for the Plasmodium falceparum signal recognition particle ALU RNA based on SAXS data deposited in the SASBDB, which has an alternate conformation and better fit to the SAXS data than the previously published structure based on the same data but other modelling methods.
Collapse
Affiliation(s)
- Bernhard C Thiel
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna 1090, Austria
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, Trieste 34136, Italy
| | - Simón Poblete
- Centro BASAL Ciencia & Vida, Avenida del Valle Norte 725, Santiago 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna 1090, Austria
- Research group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
2
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Wang T, Sun L, Mao X, Du X, Liu J, Chen L, Chen J. Bridging attraction of condensed bovine serum albumin solution in the presence of trivalent ions: A SANS study. Biochim Biophys Acta Gen Subj 2023; 1867:130487. [PMID: 37806463 DOI: 10.1016/j.bbagen.2023.130487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The bridging attraction of condensed bovine serum albumin (BSA) solution (D2O) in the presence of yttrium chloride (YCl3) was studied by small angle neutron scattering (SANS). With increasing the concentration of YCl3 (cY) from 3 to 15 mM and from 15 to 100 mM, the intensity in low-q region increases and then decreases. Combining the tri-axial ellipsoid (TaE) geometry and the multi-component sticky hard sphere (SHS) potential, a SHS-TaE model was established to quantitatively determine the size and distribution of particles. In this way, the structural mechanism of the aggregation-redissolution process in protein solution was demonstrated and discussed. As cY increases from 3 to 100 mM, the SHS radius rL decreases from ca. 2.97 to 2.50 nm, suggesting that the relatively well dispersed BSAs may form aggregates with various polydispersities. The axis a increases from 1.88 to 2.30 nm, while b and c decrease from 3.53 to 3.23 nm and from 4.12 to 3.55 nm, respectively. (RgTaE decreases from ca. 2.57 to 2.38 nm). Moreover, the scattering length density (SLD) of BSA decreases from 3.67 to 1.56 × 10-6 Å-2. All these results consistently indicate a strengthened attraction and the BSA molecules might shrink and tune out to be more like of oblate ellipsoid with increasing the amount of YCl3.
Collapse
Affiliation(s)
- Tingting Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.
| | - Liangwei Sun
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China
| | - Xin Mao
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Xiaobo Du
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.
| | - Jihui Liu
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Liang Chen
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China
| | - Jie Chen
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China.
| |
Collapse
|
4
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free-electron lasers. SCIENCE ADVANCES 2023; 9:eadj3509. [PMID: 37756398 PMCID: PMC10530093 DOI: 10.1126/sciadv.adj3509] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Suddala KC, Yoo J, Fan L, Zuo X, Wang YX, Chung HS, Zhang J. Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble. Nat Commun 2023; 14:5438. [PMID: 37673863 PMCID: PMC10482949 DOI: 10.1038/s41467-023-41155-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
T-box riboswitches are multi-domain noncoding RNAs that surveil individual amino acid availabilities in most Gram-positive bacteria. T-boxes directly bind specific tRNAs, query their aminoacylation status to detect starvation, and feedback control the transcription or translation of downstream amino-acid metabolic genes. Most T-boxes rapidly recruit their cognate tRNA ligands through an intricate three-way stem I-stem II-tRNA interaction, whose establishment is not understood. Using single-molecule FRET, SAXS, and time-resolved fluorescence, we find that the free T-box RNA assumes a broad distribution of open, semi-open, and closed conformations that only slowly interconvert. tRNA directly binds all three conformers with distinct kinetics, triggers nearly instantaneous collapses of the open conformations, and returns the T-box RNA to their pre-binding conformations upon dissociation. This scissors-like dynamic behavior is enabled by a hinge-like pseudoknot domain which poises the T-box for rapid tRNA-induced domain closure. This study reveals tRNA-chaperoned folding of flexible, multi-domain mRNAs through a Venus flytrap-like mechanism.
Collapse
Affiliation(s)
- Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Janghyun Yoo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yun-Xing Wang
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
7
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free electron lasers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541763. [PMID: 37292849 PMCID: PMC10245879 DOI: 10.1101/2023.05.24.541763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences; University at Buffalo, Buffalo, NY 14203 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
8
|
Zhang J, Chen B, Fang X. 3D Structural Analysis of Long Noncoding RNA by Small Angle X-ray Scattering and Computational Modeling. Methods Mol Biol 2023; 2568:147-163. [PMID: 36227567 DOI: 10.1007/978-1-0716-2687-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Small angle X-ray scattering (SAXS) has been widely applied as an enabling integrative technique for comprehensive analysis of the structure of biomacromolecules by multiple, complementary techniques in solution. SAXS in combination with computational modeling can be a powerful strategy bridging the secondary and 3D structural analysis of large RNAs, including the long noncoding RNAs (lncRNA). Here, we outline the major procedures and techniques in the combined use of SAXS and computational modeling for 3D structural characterization of a lncRNA, the subgenomic flaviviral RNA from Zika virus. lncRNA production and purification, RNA buffer and sample preparation for SAXS experiments, SAXS data collection and analysis, SAXS-aided RNA 3D structure prediction, and computational modeling are described.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Binxian Chen
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Myatt DP, Wharram L, Graham C, Liddell J, Branton H, Pizzey C, Cowieson N, Rambo R, Shattock RJ. Biophysical characterization of the structure of a SARS-CoV-2 self-amplifying RNA (saRNA) vaccine. Biol Methods Protoc 2023; 8:bpad001. [PMID: 36915370 PMCID: PMC10008065 DOI: 10.1093/biomethods/bpad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
The current SARS-Covid-2 (SARS-CoV-2) pandemic has led to an acceleration of messenger ribonucleic acid (mRNA) vaccine technology. The development of production processes for these large mRNA molecules, especially self-amplifying mRNA (saRNA), has required concomitant development of analytical characterization techniques. Characterizing the purity, shape and structure of these biomolecules is key to their successful performance as drug products. This article describes the biophysical characterization of the Imperial College London Self-amplifying viral RNA vaccine (IMP-1) developed for SARS-CoV-2. A variety of analytical techniques have been used to characterize the IMP-1 RNA molecule. In this article, we use ultraviolet spectroscopy, dynamic light scattering, size-exclusion chromatography small-angle X-ray scattering and circular dichroism to determine key biophysical attributes of IMP-1. Each technique provides important information about the concentration, size, shape, structure and purity of the molecule.
Collapse
Affiliation(s)
- Daniel P Myatt
- The National Biologics Manufacturing Centre (NBMC), The Centre for Process Innovation, Darlington DL1 1GL, UK
| | - Lewis Wharram
- The National Biologics Manufacturing Centre (NBMC), The Centre for Process Innovation, Darlington DL1 1GL, UK
| | - Charlotte Graham
- The National Biologics Manufacturing Centre (NBMC), The Centre for Process Innovation, Darlington DL1 1GL, UK
| | - John Liddell
- The National Biologics Manufacturing Centre (NBMC), The Centre for Process Innovation, Darlington DL1 1GL, UK
| | - Harvey Branton
- The National Biologics Manufacturing Centre (NBMC), The Centre for Process Innovation, Darlington DL1 1GL, UK
| | - Claire Pizzey
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Robert Rambo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, London W21PG, UK
| |
Collapse
|
10
|
Hu Y, Wang Y, Singh J, Sun R, Xu L, Niu X, Huang K, Bai G, Liu G, Zuo X, Chen C, Qin PZ, Fang X. Phosphorothioate-Based Site-Specific Labeling of Large RNAs for Structural and Dynamic Studies. ACS Chem Biol 2022; 17:2448-2460. [PMID: 36069699 PMCID: PMC10186269 DOI: 10.1021/acschembio.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulsed electron-electron double resonance (PELDOR) spectroscopy, X-ray scattering interferometry (XSI), and single-molecule Förster resonance energy transfer (smFRET) are molecular rulers that provide inter- or intramolecular pair-wise distance distributions in the nanometer range, thus being ideally suitable for structural and dynamic studies of biomolecules including RNAs. The prerequisite for such applications requires site-specific labeling of biomolecules with spin labels, gold nanoparticles, and fluorescent tags, respectively. Recently, site-specific labeling of large RNAs has been achieved by a combination of transcription of an expanded genetic alphabet containing A-T/G-C base pairs and NaM-TPT3 unnatural base pair (UBP) with post-transcriptional modifications at UBP bases by click chemistry or amine-NHS ester reactions. However, due to the bulky sizes of functional groups or labeling probes used, such strategies might cause structural perturbation and decrease the accuracy of distance measurements. Here, we synthesize an α-thiophosphorylated variant of rTPT3TP (rTPT3αS), which allows for post-transcriptional site-specific labeling of large RNAs at the internal α-phosphate backbone via maleimide-modified probes. Subsequent PELDOR, XSI, and smFRET measurements result in narrower distance distributions than labeling at the TPT3 base. The presented strategy provides a new route to empower the molecular rulers for structural and dynamic studies of large RNA and its complex.
Collapse
Affiliation(s)
- Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jaideep Singh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ruirui Sun
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lilei Xu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolin Niu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keyun Huang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont Illinois 60439, United States
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Monsen RC, DeLeeuw LW, Dean WL, Gray RD, Chakravarthy S, Hopkins JB, Chaires JB, Trent JO. Long promoter sequences form higher-order G-quadruplexes: an integrative structural biology study of c-Myc, k-Ras and c-Kit promoter sequences. Nucleic Acids Res 2022; 50:4127-4147. [PMID: 35325198 PMCID: PMC9023277 DOI: 10.1093/nar/gkac182] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.
Collapse
Affiliation(s)
- Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lynn W DeLeeuw
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - William L Dean
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Tants JN, Becker L, McNicoll F, Müller-McNicoll M, Schlundt A. NMR-derived secondary structure of the full-length Ox40 mRNA 3'UTR and its multivalent binding to the immunoregulatory RBP Roquin. Nucleic Acids Res 2022; 50:4083-4099. [PMID: 35357505 PMCID: PMC9023295 DOI: 10.1093/nar/gkac212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs). Structural analyses are complicated by inconsistent mapping and prediction of RNA fold, by dynamics, and size. We here, for the first time, provide the secondary structure of a complete mRNA 3'UTR. We use NMR spectroscopy in a divide-and-conquer strategy complemented with SAXS, In-line probing and SHAPE-seq applied to the 3'UTR of Ox40 mRNA, which encodes a T-cell co-receptor repressed by the protein Roquin. We provide contributions of RNA elements to Roquin-binding. The protein uses its extended bi-modal ROQ domain to sequentially engage in a 2:1 stoichiometry with a 3'UTR core motif. We observe differential binding of Roquin to decay elements depending on their structural embedment. Our data underpins the importance of studying RNA regulation in a full sequence and structural context. This study serves as a paradigm for an approach in analysing structured RNA-regulatory hubs and their binding by RBPs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lea Marie Becker
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - François McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Endeward B, Hu Y, Bai G, Liu G, Prisner TF, Fang X. Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy. Biophys J 2022; 121:37-43. [PMID: 34896070 PMCID: PMC8758415 DOI: 10.1016/j.bpj.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy is powerful in structure and dynamics study of biological macromolecules by providing distance distribution information ranging from 1.8 to 6 nm, providing that the biomolecules are site-specifically labeled with paramagnetic tags. However, long distances up to 16 nm have been measured on perdeuterated and spin-labeled proteins in deuterated solvent by PELDOR. Here we demonstrate long-range distance measurement on a large RNA, the 97-nucleotide 3'SL RNA element of the Dengue virus 2 genome, by combining a posttranscriptional site-directed spin labeling method using an unnatural basepair system with RNA perdeuteration by enzymatic synthesis using deuterated nucleotides. The perdeuteration removes the coupling of the electron spins of the nitroxide spin labels from the proton nuclear spin system of the RNA and does extend the observation time windows of PELDOR up to 50 μs. This enables one to determine long distances up to 14 nm for large RNAs and their conformational flexibility.
Collapse
Affiliation(s)
- Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 10086, China
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 10019, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 10019, China
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt, Germany,Corresponding author
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 10086, China,Corresponding author
| |
Collapse
|
15
|
Fang X, Gallego J, Wang YX. Deriving RNA topological structure from SAXS. Methods Enzymol 2022; 677:479-529. [DOI: 10.1016/bs.mie.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
O'Carroll IP, Fan L, Kroupa T, McShane EK, Theodore C, Yates EA, Kondrup B, Ding J, Martin TS, Rein A, Wang YX. Structural Mimicry Drives HIV-1 Rev-Mediated HERV-K Expression. J Mol Biol 2020; 432:166711. [PMID: 33197463 DOI: 10.1016/j.jmb.2020.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Expression of the Human Endogenous Retrovirus Type K (HERV-K), the youngest and most active HERV, has been associated with various cancers and neurodegenerative diseases. As in all retroviruses, a fraction of HERV-K transcripts is exported from the nucleus in unspliced or incompletely spliced forms to serve as templates for translation of viral proteins. In a fraction of HERV-K loci (Type 2 proviruses), nuclear export of the unspliced HERV-K mRNA appears to be mediated by a cis-acting signal on the mRNA, the RcRE, and the protein Rec-these are analogous to the RRE-Rev system in HIV-1. Interestingly, the HIV-1 Rev protein is able to mediate the nuclear export of the HERV-K RcRE, contributing to elevated HERV-K expression in HIV-infected patients. We aimed to understand the structural basis for HIV Rev-HERV-K RcRE recognition. We examined the conformation of the RcRE RNA in solution using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). We found that the 433-nt long RcRE can assume folded or extended conformations as observed by AFM. SAXS analysis of a truncated RcRE variant revealed an "A"-shaped topological structure similar to the one previously reported for the HIV-1 RRE. The effect of the overall topology was examined using several deletion variants. SAXS and biochemical analyses demonstrated that the "A" shape is necessary for efficient Rev-RcRE complex formation in vitro and nuclear export activity in cell culture. The findings provide insight into the mechanism of HERV-K expression and a structural explanation for HIV-1 Rev-mediated expression of HERV-K in HIV-infected patients. IMPORTANCE: Expression of the human endogenous retrovirus type K (HERV-K) has been associated with various cancers and autoimmune diseases. Nuclear export of both HIV-1 and HERV-K mRNAs is dependent on the interaction between a small viral protein (Rev in HIV-1 and Rec in HERV-K) and a region on the mRNA (RRE in HIV-1 and RcRE in HERV-K). HIV-1 Rev is able to mediate the nuclear export of RcRE-containing HERV-K mRNAs, which contributes to elevated production of HERV-K proteins in HIV-infected patients. We report the solution conformation of the RcRE RNA-the first three-dimensional topological structure for a HERV molecule-and find that the RcRE resembles the HIV-1 nuclear export signal, RRE. The finding reveals the structural basis for the increased HERV-K expression observed in HIV-infected patients. Elevated HERV expression, mediated by HIV infection or other stressors, can have various HERV-related biological consequences. The findings provide structural insight for regulation of HERV-K expression.
Collapse
Affiliation(s)
- Ina P O'Carroll
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD 21702, USA
| | - Tomáš Kroupa
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin K McShane
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Christophe Theodore
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Elizabeth A Yates
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Benjamin Kondrup
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Tyler S Martin
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
19
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
20
|
Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proc Natl Acad Sci U S A 2020; 117:22823-22832. [PMID: 32868439 DOI: 10.1073/pnas.2005217117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conjugation of RNAs with nanoparticles (NPs) is of significant importance because of numerous applications in biology and medicine, which, however, remains challenging especially for large ones. So far, the majority of RNA labeling relies on solid-phase chemical synthesis, which is generally limited to RNAs smaller than 100 nucleotides (nts). We, here, present an efficient and generally applicable labeling strategy for site-specific covalent conjugation of large RNAs with a gold nanoparticle (Nanogold) empowered by transcription of an expanded genetic alphabet containing the A-T/U and G-C natural base pairs (bps) and the TPT3-NaM unnatural base pair (UBP). We synthesize an amine-derivatized TPT3 (TPT3A), which is site specifically incorporated into a 97-nt 3'SL RNA and a 719-nt minigenomic RNA (DENV-mini) from Dengue virus serotype 2 (DENV2) by in vitro T7 transcription. The TPT3A-modified RNAs are covalently conjugated with mono-Sulfo-N-hydroxysuccinimidyl (NHS)-Nanogold NPs via an amine and NHS ester reaction and further purified under nondenaturing conditions. TPT3 modification and Nanogold labeling cause minimal structural perturbations to the RNAs by circular dichroism, small angle X-ray scattering (SAXS), and binding activity assay. We demonstrate the application of the Nanogold-RNA conjugates in large RNA structural biology by an emerging molecular ruler, X-ray scattering interferometry (XSI). The internanoparticle distance distributions in the 3'SL and DENV-mini RNAs derived from XSI measurements support the hypothetical model of flavivirus genome circularization, thus, validate the applicability of this labeling strategy. The presented strategy overcomes the size constraints in conventional RNA labeling strategies and is expected to have wide applications in large RNA structural biology and RNA nanotechnology.
Collapse
|
21
|
Wang Y, Kathiresan V, Chen Y, Hu Y, Jiang W, Bai G, Liu G, Qin PZ, Fang X. Posttranscriptional site-directed spin labeling of large RNAs with an unnatural base pair system under non-denaturing conditions. Chem Sci 2020; 11:9655-9664. [PMID: 33224460 PMCID: PMC7667596 DOI: 10.1039/d0sc01717e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date.
Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date. We here demonstrate an efficient and generally applicable posttranscriptional SDSL method for large RNAs using an expanded genetic alphabet containing the NaM-TPT3 unnatural base pair (UBP). An alkyne-modified TPT3 ribonucleotide triphosphate (rTPT3COTP) is synthesized and site-specifically incorporated into large RNAs by in vitro transcription, which allows attachment of the azide-containing nitroxide through click chemistry. We validate this strategy by SDSL of a 419-nucleotide ribonuclease P (RNase P) RNA from Bacillus stearothermophilus under non-denaturing conditions. The effects of site-directed UBP incorporation and subsequent spin labeling on the global structure and function of RNase P are marginal as evaluated by Circular Dichroism spectroscopy, Small Angle X-ray Scattering, Sedimentation Velocity Analytical Ultracentrifugation and enzymatic assay. Continuous-Wave EPR analyses reveal that the labeling reaction is efficient and specific, and Pulsed Electron–Electron Double Resonance measurements yield an inter-spin distance distribution that agrees with the crystal structure. The labeling strategy as presented overcomes the size constraint of RNA labeling, opening new avenues of spin labeling and EPR spectroscopy for investigating the structure and dynamics of large RNAs.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Venkatesan Kathiresan
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Yaoyi Chen
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Wei Jiang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Peter Z Qin
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
22
|
Gong Z, Yang S, Dong X, Yang QF, Zhu YL, Xiao Y, Tang C. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ 1 RNA Riboswitches. J Mol Biol 2020; 432:4523-4543. [PMID: 32522558 DOI: 10.1016/j.jmb.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
Single-stranded noncoding regulatory RNAs, as exemplified by bacterial riboswitches, are highly dynamic. The conformational dynamics allow the riboswitch to reach maximum switching efficiency under appropriate conditions. Here we characterize the conformational dynamics of preQ1 riboswitches from mesophilic and thermophilic bacterial species at various temperatures. With the integrative use of small-angle X-ray scattering, NMR, and molecular dynamics simulations, we model the ensemble-structures of the preQ1 riboswitch aptamers without or with a ligand bound. We show that the preQ1 riboswitch is sufficiently dynamic and fluctuating among multiple folding intermediates only near the physiological temperature of the microorganism. The hierarchical folding dynamics of the RNA involves the docking of 3'-tail to form a second RNA helix and the helical stacking to form an H-type pseudoknot structure. Further, we show that RNA secondary and tertiary dynamics can be modulated by temperature and by the length of an internal loop. The coupled equilibria between RNA folding intermediates are essential for preQ1 binding, and a four-state exchange model can account for the change of ligand-triggered switching efficiency with temperature. Together, we have established a relationship between the hierarchical dynamics and riboswitch function, and illustrated how the RNA adapts to high temperature.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Shuai Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Qing-Fen Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yue-Ling Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| |
Collapse
|
23
|
Twittenhoff C, Brandenburg VB, Righetti F, Nuss AM, Mosig A, Dersch P, Narberhaus F. Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions. Nucleic Acids Res 2020; 48:e71. [PMID: 32463449 PMCID: PMC7337928 DOI: 10.1093/nar/gkaa404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The dynamic conformation of RNA molecules within living cells is key to their function. Recent advances in probing the RNA structurome in vivo, including the use of SHAPE (Selective 2'-Hydroxyl Acylation analyzed by Primer Extension) or kethoxal reagents or DMS (dimethyl sulfate), provided unprecedented insights into the architecture of RNA molecules in the living cell. Here, we report the establishment of lead probing in a global RNA structuromics approach. In order to elucidate the transcriptome-wide RNA landscape in the enteric pathogen Yersinia pseudotuberculosis, we combined lead(II) acetate-mediated cleavage of single-stranded RNA regions with high-throughput sequencing. This new approach, termed 'Lead-seq', provides structural information independent of base identity. We show that the method recapitulates secondary structures of tRNAs, RNase P RNA, tmRNA, 16S rRNA and the rpsT 5'-untranslated region, and that it reveals global structural features of mRNAs. The application of Lead-seq to Y. pseudotuberculosis cells grown at two different temperatures unveiled the first temperature-responsive in vivo RNA structurome of a bacterial pathogen. The translation of candidate genes derived from this approach was confirmed to be temperature regulated. Overall, this study establishes Lead-seq as complementary approach to interrogate intracellular RNA structures on a global scale.
Collapse
Affiliation(s)
| | | | | | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 381214 Braunschweig, Germany
| | - Axel Mosig
- Department of Biophysics, Ruhr University Bochum, 44780 Bochum, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 381214 Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
24
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
25
|
Zhang Y, Zhang Y, Liu Z, Cheng M, Ma J, Wang Y, Qin C, Fang X. Long non-coding subgenomic flavivirus RNAs have extended 3D structures and are flexible in solution. EMBO Rep 2019; 20:e47016. [PMID: 31502753 PMCID: PMC6832101 DOI: 10.15252/embr.201847016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/05/2023] Open
Abstract
Most mosquito-borne flaviviruses, including Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), produce long non-coding subgenomic RNAs (sfRNAs) in infected cells that link to pathogenicity and immune evasion. Until now, the structural characterization of these lncRNAs remains limited. Here, we studied the 3D structures of individual and combined subdomains of sfRNAs, and visualized the accessible 3D conformational spaces of complete sfRNAs from DENV2, ZIKV, and WNV by small angle X-ray scattering (SAXS) and computational modeling. The individual xrRNA1s and xrRNA2s adopt similar structures in solution as the crystal structure of ZIKV xrRNA1, and all xrRNA1-2s form compact structures with reduced flexibility. While the DB12 of DENV2 is extended, the DB12s of ZIKV and WNV are compact due to the formation of intertwined double pseudoknots. All 3' stem-loops (3'SLs) share similar rod-like structures. Complete sfRNAs are extended and sample a large conformational space in solution. Our work not only provides structural insight into the function of flavivirus sfRNAs, but also highlights strategies of visualizing other lncRNAs in solution by SAXS and computational methods.
Collapse
Affiliation(s)
- Yupeng Zhang
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| | - Yikan Zhang
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| | - Zhong‐Yu Liu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- School of Medicine (Shenzhen)Sun Yat‐sen UniversityGuangzhouChina
| | - Meng‐Li Cheng
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| | - Cheng‐Feng Qin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
26
|
Hu X, Li X, Yang L, Zhu Y, Shi Y, Li Y, Wang H, Gong Q. Conformation and mechanical property of rpoS mRNA inhibitory stem studied by optical tweezers and X-ray scattering. PLoS One 2019; 14:e0222938. [PMID: 31557220 PMCID: PMC6762075 DOI: 10.1371/journal.pone.0222938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023] Open
Abstract
3' downstream inhibitory stem plays a crucial role in locking rpoS mRNA 5' untranslated region in a self-inhibitory state. Here, we used optical tweezers to study the unfolding/refolding of rpoS inhibitory stem in the absence and presence of Mg2+. We found adding Mg2+ decreased the free energy of the RNA junction without re-arranging its secondary structure, through confirming that this RNA formed a canonical RNA three-way junction. We suspected increased free energy might change the relative orientation of different stems of rpoS and confirmed this by small angle X-ray scattering. Such changed conformation may improve Hfq-bridged annealing between sRNA and rpoS RNA inhibitory stem. We established a convenient route to analyze the changes of RNA conformation and folding dynamics by combining optical tweezers with X-ray scattering methods. This route can be easily applied in the studies of other RNA structure and ligand-RNA.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Xuanling Li
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Lingna Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yilin Zhu
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Yunyu Shi
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yinmei Li
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Haowei Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
| | - Qingguo Gong
- Department of Optics and Optical Engineering, University of Science and Technology of China and Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, P. R. China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
27
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
28
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
29
|
Bhandari YR, Fan L, Fang X, Zaki GF, Stahlberg EA, Jiang W, Schwieters CD, Stagno JR, Wang YX. Topological Structure Determination of RNA Using Small-Angle X-Ray Scattering. J Mol Biol 2017; 429:3635-3649. [PMID: 28918093 DOI: 10.1016/j.jmb.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Knowledge of RNA three-dimensional topological structures provides important insight into the relationship between RNA structural components and function. It is often likely that near-complete sets of biochemical and biophysical data containing structural restraints are not available, but one still wants to obtain knowledge about approximate topological folding of RNA. In this regard, general methods for determining such topological structures with minimum readily available restraints are lacking. Naked RNAs are difficult to crystallize and NMR spectroscopy is generally limited to small RNA fragments. By nature, sequence determines structure and all interactions that drive folding are self-contained within sequence. Nevertheless, there is little apparent correlation between primary sequences and three-dimensional folding unless supplemented with experimental or phylogenetic data. Thus, there is an acute need for a robust high-throughput method that can rapidly determine topological structures of RNAs guided by some experimental data. We present here a novel method (RS3D) that can assimilate the RNA secondary structure information, small-angle X-ray scattering data, and any readily available tertiary contact information to determine the topological fold of RNA. Conformations are firstly sampled at glob level where each glob represents a nucleotide. Best-ranked glob models can be further refined against solvent accessibility data, if available, and then converted to explicit all-atom coordinates for refinement against SAXS data using the Xplor-NIH program. RS3D is widely applicable to a variety of RNA folding architectures currently present in the structure database. Furthermore, we demonstrate applicability and feasibility of the program to derive low-resolution topological structures of relatively large multi-domain RNAs.
Collapse
Affiliation(s)
- Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| | - Lixin Fan
- Leidos Biomedical Research Inc., Frederick, MD 21702, United States
| | - Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - George F Zaki
- Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Eric A Stahlberg
- Data Science and Information Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Wei Jiang
- Argonne National Laboratory, Argonne, IL 60439, United States
| | - Charles D Schwieters
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States; NCI Small Angle X-ray Scattering Core Facility, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| |
Collapse
|
30
|
Cantero-Camacho Á, Fan L, Wang YX, Gallego J. Three-dimensional structure of the 3'X-tail of hepatitis C virus RNA in monomeric and dimeric states. RNA (NEW YORK, N.Y.) 2017; 23:1465-1476. [PMID: 28630140 PMCID: PMC5558915 DOI: 10.1261/rna.060632.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
The 3'X domain is a 98-nt region located at the 3' end of hepatitis C virus genomic RNA that plays essential functions in the viral life cycle. It contains an absolutely conserved, 16-base palindromic sequence that promotes viral RNA dimerization, overlapped with a 7-nt tract implicated in a distal contact with a nearby functional sequence. Using small angle X-ray scattering measurements combined with model building guided by NMR spectroscopy, we have studied the stoichiometry, structure, and flexibility of domain 3'X and two smaller subdomain sequences as a function of ionic strength, and obtained a three-dimensional view of the full-length domain in its monomeric and dimeric states. In the monomeric form, the 3'X domain adopted an elongated conformation containing two SL1' and SL2' double-helical stems stabilized by coaxial stacking. This structure was significantly less flexible than that of isolated subdomain SL2' monomers. At higher ionic strength, the 3'X scattering envelope nearly doubled its size, reflecting the formation of extended homodimers containing an antiparallel SL2' duplex flanked by coaxially stacked SL1' helices. Formation of these dimers could initialize and/or regulate the packaging of viral RNA genomes into virions.
Collapse
Affiliation(s)
| | - Lixin Fan
- The Small-Angle X-ray Scattering Core Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, USA
| | - Yun-Xing Wang
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
31
|
Cantara WA, Olson ED, Musier-Forsyth K. Analysis of RNA structure using small-angle X-ray scattering. Methods 2017; 113:46-55. [PMID: 27777026 PMCID: PMC5253320 DOI: 10.1016/j.ymeth.2016.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 11/22/2022] Open
Abstract
In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building.
Collapse
Affiliation(s)
- William A Cantara
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
32
|
Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods. Methods 2016; 118-119:146-162. [PMID: 27939506 DOI: 10.1016/j.ymeth.2016.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes.
Collapse
|
33
|
Small-angle scattering and 3D structure interpretation. Curr Opin Struct Biol 2016; 40:1-7. [DOI: 10.1016/j.sbi.2016.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
|
34
|
Connelly CM, Moon MH, Schneekloth JS. The Emerging Role of RNA as a Therapeutic Target for Small Molecules. Cell Chem Biol 2016; 23:1077-1090. [PMID: 27593111 PMCID: PMC5064864 DOI: 10.1016/j.chembiol.2016.05.021] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/07/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
Abstract
Recent advances in understanding different RNAs and unique features of their biology have revealed a wealth of information. However, approaches to identify small molecules that target these newly discovered regulatory elements have been lacking. The application of new biochemical screening and design-based technologies, coupled with a resurgence of interest in phenotypic screening, has resulted in several compelling successes in targeting RNA. A number of recent advances suggest that achieving the long-standing goal of developing drug-like, biologically active small molecules that target RNA is possible. This review highlights advances and successes in approaches to targeting RNA with diverse small molecules, and the potential for these technologies to pave the way to new types of RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Colleen M Connelly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle H Moon
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
35
|
Bhandari YR, Jiang W, Stahlberg EA, Stagno JR, Wang YX. Modeling RNA topological structures using small angle X-ray scattering. Methods 2016; 103:18-24. [DOI: 10.1016/j.ymeth.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 02/01/2023] Open
|
36
|
Chen Y, Pollack L. SAXS studies of RNA: structures, dynamics, and interactions with partners. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:512-26. [PMID: 27071649 DOI: 10.1002/wrna.1349] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Small-angle X-ray scattering, SAXS, is a powerful and easily employed experimental technique that provides solution structures of macromolecules. The size and shape parameters derived from SAXS provide global structural information about these molecules in solution and essentially complement data acquired by other biophysical methods. As applied to protein systems, SAXS is a relatively mature technology: sophisticated tools exist to acquire and analyze data, and to create structural models that include dynamically flexible ensembles. Given the expanding appreciation of RNA's biological roles, there is a need to develop comparable tools to characterize solution structures of RNA, including its interactions with important biological partners. We review the progress toward achieving this goal, focusing on experimental and computational innovations. The use of multiphase modeling, absolute calibration and contrast variation methods, among others, provides new and often unique ways of visualizing this important biological molecule and its essential partners: ions, other RNAs, or proteins. WIREs RNA 2016, 7:512-526. doi: 10.1002/wrna.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE. Structural Analysis of Multi-Helical RNAs by NMR-SAXS/WAXS: Application to the U4/U6 di-snRNA. J Mol Biol 2016; 428:777-789. [PMID: 26655855 PMCID: PMC4790120 DOI: 10.1016/j.jmb.2015.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 01/17/2023]
Abstract
NMR and SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) are highly complementary approaches for the analysis of RNA structure in solution. Here we describe an efficient NMR-SAXS/WAXS approach for structural investigation of multi-helical RNAs. We illustrate this approach by determining the overall fold of a 92-nt 3-helix junction from the U4/U6 di-snRNA. The U4/U6 di-snRNA is conserved in eukaryotes and is part of the U4/U6.U5 tri-snRNP, a large ribonucleoprotein complex that comprises a major subunit of the assembled spliceosome. Helical orientations can be determined by X-ray scattering data alone, but the addition of NMR RDC (residual dipolar coupling) restraints improves the structure models. RDCs were measured in two different external alignment media and also by magnetic susceptibility anisotropy. The resulting alignment tensors are collinear, which is a previously noted problem for nucleic acids. Including WAXS data in the calculations produces models with significantly better fits to the scattering data. In solution, the U4/U6 di-snRNA forms a 3-helix junction with a planar Y-shaped structure and has no detectable tertiary interactions. Single-molecule Förster resonance energy transfer data support the observed topology. A comparison with the recently determined cryo-electron microscopy structure of the U4/U6.U5 tri-snRNP illustrates how proteins scaffold the RNA and dramatically alter the geometry of the U4/U6 3-helix junction.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren A Michael
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|