1
|
Raza SHA, Zhong R, Yu X, Zhao G, Wei X, Lei H. Advances of Predicting Allosteric Mechanisms Through Protein Contact in New Technologies and Their Application. Mol Biotechnol 2024; 66:3385-3397. [PMID: 37957479 DOI: 10.1007/s12033-023-00951-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Allostery is an intriguing phenomenon wherein the binding activity of a biological macromolecule is modulated via non-canonical binding site, resulting in synchronized functional changes. The mechanics underlying allostery are relatively complex and this review is focused on common methodologies used to study allostery, such as X-ray crystallography, NMR spectroscopy, and HDXMS. Different methodological approaches are used to generate data in different scenarios. For example, X-ray crystallography provides high-resolution structural information, NMR spectroscopy offers dynamic insights into allosteric interactions in solution, and HDXMS provides information on protein dynamics. The residue transition state (RTS) approach has emerged as a critical tool in understanding the energetics and conformational changes associated with allosteric regulation. Allostery has significant implications in drug discovery, gene transcription, disease diagnosis, and enzyme catalysis. Enzymes' catalytic activity can be modulated by allosteric regulation, offering opportunities to develop novel therapeutic alternatives. Understanding allosteric mechanisms associated with infectious organisms like SARS-CoV and bacterial pathogens can aid in the development of new antiviral drugs and antibiotics. Allosteric mechanisms are crucial in the regulation of a variety of signal transduction and cell metabolism pathways, which in turn govern various cellular processes. Despite progress, challenges remain in identifying allosteric sites and characterizing their contribution to a variety of biological processes. Increased understanding of these mechanisms can help develop allosteric systems specifically designed to modulate key biological mechanisms, providing novel opportunities for the development of targeted therapeutics. Therefore, the current review aims to summarize common methodologies that are used to further our understanding of allosteric mechanisms. In conclusion, this review provides insights into the methodologies used for the study of allostery, its applications in in silico modeling, the mechanisms underlying antibody allostery, and the ongoing challenges and prospects in advancing our comprehension of this intriguing phenomenon.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Licheng Detection and Certification Group Co., Ltd., Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
2
|
Sokratous K, Cooper-Shepherd DA, Ujma J, Qu F, Giles K, Ben-Younis A, Hensen M, Langridge JI, Gault J, Jazayeri A, Liko I, Hopper JTS. Enhanced Declustering Enables Native Top-Down Analysis of Membrane Protein Complexes using Ion-Mobility Time-Aligned Fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1891-1901. [PMID: 39007842 DOI: 10.1021/jasms.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Native mass spectrometry (MS) is proving to be a disruptive technique for studying the interactions of proteins, necessary for understanding the functional roles of these biomolecules. Recent research is expanding the application of native MS towards membrane proteins directly from isolated membrane preparations or from purified detergent micelles. The former results in complex spectra comprising several heterogeneous protein complexes; the latter enables therapeutic protein targets to be screened against multiplexed preparations of compound libraries. In both cases, the resulting spectra are increasingly complex to assign/interpret, and the key to these new directions of native MS research is the ability to perform native top-down analysis, which allows unambiguous peak assignment. To achieve this, detergent removal is necessary prior to MS analyzers, which allow selection of specific m/z values, representing the parent ion for downstream activation. Here, we describe a novel, enhanced declustering (ED) device installed into the first pumping region of a cyclic IMS-enabled mass spectrometry platform. The device enables declustering of ions prior to the quadrupole by imparting collisional activation through an oscillating electric field applied between two parallel plates. The positioning of the device enables liberation of membrane protein ions from detergent micelles. Quadrupole selection can now be utilized to isolate protein-ligand complexes, and downstream collision cells enable the dissociation and identification of binding partners. We demonstrate that ion mobility (IM) significantly aids in the assignment of top-down spectra, aligning fragments to their corresponding parent ions by means of IM drift time. Using this approach, we were able to confidently assign and identify a novel hit compound against PfMATE, obtained from multiplexed ligand libraries.
Collapse
Affiliation(s)
- Kleitos Sokratous
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | | | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Feng Qu
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Aisha Ben-Younis
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Mario Hensen
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Joseph Gault
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Ali Jazayeri
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Idlir Liko
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| | - Jonathan T S Hopper
- OMass Therapeutics, Chancellor Court, John Smith Drive, ARC Oxford OX4 2GX, United Kingdom
| |
Collapse
|
3
|
Hofmann H. All over or overall - Do we understand allostery? Curr Opin Struct Biol 2023; 83:102724. [PMID: 37898005 DOI: 10.1016/j.sbi.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023]
Abstract
Allostery is probably the most important concept in the regulation of cellular processes. Models to explain allostery are plenty. Each sheds light on different aspects but their entirety conveys an ambiguous feeling of comprehension and disappointment. Here, I discuss the most popular allostery models, their roots, similarities, and limitations. All of them are thermodynamic models. Naturally this bears a certain degree of redundancy, which forms the center of this review. After sixty years, many questions remain unanswered, mainly because our human longing for causality as base for understanding is not satisfied by thermodynamics alone. A description of allostery in terms of pathways, i.e., as a temporal chain of events, has been-, and still is-, a missing piece of the puzzle.
Collapse
Affiliation(s)
- Hagen Hofmann
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel.
| |
Collapse
|
4
|
Abstract
Cooperativity (homotropic allostery) is the primary mechanism by which evolution steepens the binding curves of biomolecular receptors to produce more responsive input-output behavior in biomolecular systems. Motivated by the ubiquity with which nature employs this effect, over the past 15 years we, together with other groups, have engineered this mechanism into several otherwise noncooperative receptors. These efforts largely aimed to improve the utility of such receptors in artificial biotechnologies, such as synthetic biology and biosensors, but they have also provided the first quantitative, experimental tests of longstanding ideas about the mechanisms underlying cooperativity. In this article, we review the literature on the design of this effect, paying particular attention to the design strategies involved, the extent to which each can be rationally applied to (and optimized for) new receptors, and what each teaches us about the origins and optimization of this important phenomenon.
Collapse
Affiliation(s)
- Gabriel Ortega
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alejandro Chamorro-Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA;
- Biological Engineering Graduate Program, University of California, Santa Barbara, California, USA
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Rome, Italy
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA;
- Biological Engineering Graduate Program, University of California, Santa Barbara, California, USA
| |
Collapse
|
5
|
Abstract
Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Dalton T Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Joyner PM, Tran DP, Zenaidee MA, Loo JA. Characterization of protein-ligand binding interactions of enoyl-ACP reductase (FabI) by native MS reveals allosteric effects of coenzymes and the inhibitor triclosan. Protein Sci 2022; 31:568-579. [PMID: 34882866 PMCID: PMC8862436 DOI: 10.1002/pro.4252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
The enzyme enoyl-ACP reductase (also called FabI in bacteria) is an essential member of the fatty acid synthase II pathway in plants and bacteria. This enzyme is the target of the antibacterial drug triclosan and has been the subject of extensive studies for the past 20 years. Despite the large number of reports describing the biochemistry of this enzyme, there have been no studies that provided direct observation of the protein and its various ligands. Here we describe the use of native MS to characterize the protein-ligand interactions of FabI with its coenzymes NAD+ and NADH and with the inhibitor triclosan. Measurements of the gas-phase affinities of the enzyme for these ligands yielded values that are in close agreement with solution-phase affinity measurements. Additionally, FabI is a homotetramer and we were able to measure the affinity of each subunit for each coenzyme, which revealed that both coenzymes exhibit a positive homotropic allosteric effect. An allosteric effect was also observed in association with the inhibitor triclosan. These observations provide new insights into this well-studied enzyme and suggest that there may still be gaps in the existing mechanistic models that explain FabI inhibition.
Collapse
Affiliation(s)
- P. Matthew Joyner
- Natural Science DivisionPepperdine UniversityMalibuCaliforniaUSA
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
| | - Denise P. Tran
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
- Sydney Mass SpectrometryThe University of Sydney, Charles Perkins CentreCamperdownNew South WalesAustralia
| | - Muhammad A. Zenaidee
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
- Australian Proteome Analysis FacilityMacquarie UniversityMacquarieNew South WalesAustralia
| | - Joseph A. Loo
- Department of Chemistry & BiochemistryUniversity of California‐Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Arlt C, Nutschan K, Haase A, Ihling C, Tänzler D, Sinz A, Sawers RG. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN) 2CO group during maturation of E. coli [NiFe]-hydrogenase 2. Sci Rep 2021; 11:24362. [PMID: 34934150 PMCID: PMC8692609 DOI: 10.1038/s41598-021-03900-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN)2CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN)2CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN)2CO group. Using native mass spectrometry of an anaerobically isolated HybG-HypD complex we show that HybG carries the Fe(CN)2CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO2-related, covalent modifications that depended on the presence of the N-terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN)2CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN)2CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.
Collapse
Affiliation(s)
- Christian Arlt
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Kerstin Nutschan
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Alexander Haase
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Dirk Tänzler
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Rogawski R, Rogel A, Bloch I, Gal M, Horovitz A, London N, Sharon M. Intracellular Protein–Drug Interactions Probed by Direct Mass Spectrometry of Cell Lysates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Itai Bloch
- Biotechnology Department MIGAL-Galilee Research Institute Kiryat-Shmona 11016 Israel
| | - Maayan Gal
- Department of Oral Biology The Goldschleger School of Dental Medicine Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Nir London
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Michal Sharon
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
10
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
12
|
Rogawski R, Rogel A, Bloch I, Gal M, Horovitz A, London N, Sharon M. Intracellular Protein-Drug Interactions Probed by Direct Mass Spectrometry of Cell Lysates. Angew Chem Int Ed Engl 2021; 60:19637-19642. [PMID: 34101963 PMCID: PMC8457057 DOI: 10.1002/anie.202104947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Indexed: 12/22/2022]
Abstract
Understanding protein–ligand interactions in a cellular context is an important goal in molecular biology and biochemistry, and particularly for drug development. Investigators must demonstrate that drugs penetrate cells and specifically bind their targets. Towards that end, we present a native mass spectrometry (MS)‐based method for analyzing drug uptake and target engagement in eukaryotic cells. This method is based on our previously introduced direct‐MS method for rapid analysis of proteins directly from crude samples. Here, direct‐MS enables label‐free studies of protein–drug binding in human cells and is used to determine binding affinities of lead compounds in crude samples. We anticipate that this method will enable the application of native MS to a range of problems where cellular context is important, including protein–protein interactions, drug uptake and binding, and characterization of therapeutic proteins.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Itai Bloch
- Biotechnology Department, MIGAL-Galilee Research Institute, Kiryat-Shmona, 11016, Israel
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
13
|
Gopi S, Lukose B, Naganathan AN. Diverse Native Ensembles Dictate the Differential Functional Responses of Nuclear Receptor Ligand-Binding Domains. J Phys Chem B 2021; 125:3546-3555. [PMID: 33818099 DOI: 10.1021/acs.jpcb.1c00972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Native states of folded proteins are characterized by a large ensemble of conformations whose relative populations and interconversion dynamics determine the functional output. This is more apparent in transcription factors that have evolved to be inherently sensitive to small perturbations, thus fine-tuning gene expression. To explore the extent to which such functional features are imprinted on the folding landscape of transcription factor ligand-binding domains (LBDs), we characterize paralogous LBDs of the nuclear receptor (NR) family employing an energetically detailed and ensemble-based Ising-like statistical mechanical model. We find that the native ensembles of the LBDs from glucocorticoid receptor, PPAγ, and thyroid hormone receptor display a remarkable diversity in the width of the native wells, the number and nature of partially structured states, and hence the degree of conformational order. Monte Carlo simulations employing the full state representation of the ensemble highlight that many of the functional conformations coexist in equilibrium, whose relative populations are sensitive to both temperature and the strength of ligand binding. Allosteric modulation of the degree of structure at a coregulator binding site on ligand binding is shown to arise via a redistribution of populations in the native ensembles of glucocorticoid and PPAγ LBDs. Our results illustrate how functional requirements can drive the evolution of conformationally diverse native ensembles in paralogs.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bincy Lukose
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Pagano L, Toto A, Malagrinò F, Visconti L, Jemth P, Gianni S. Double Mutant Cycles as a Tool to Address Folding, Binding, and Allostery. Int J Mol Sci 2021; 22:E828. [PMID: 33467625 PMCID: PMC7830974 DOI: 10.3390/ijms22020828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative measurement of intramolecular and intermolecular interactions in protein structure is an elusive task, not easy to address experimentally. The phenomenon denoted 'energetic coupling' describes short- and long-range interactions between two residues in a protein system. A powerful method to identify and quantitatively characterize long-range interactions and allosteric networks in proteins or protein-ligand complexes is called double-mutant cycles analysis. In this review we describe the thermodynamic principles and basic equations that underlie the double mutant cycle methodology, its fields of application and latest employments, and caveats and pitfalls that the experimentalists must consider. In particular, we show how double mutant cycles can be a powerful tool to investigate allosteric mechanisms in protein binding reactions as well as elusive states in protein folding pathways.
Collapse
Affiliation(s)
- Livia Pagano
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (A.T.); (F.M.); (L.V.)
| | - Angelo Toto
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (A.T.); (F.M.); (L.V.)
| | - Francesca Malagrinò
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (A.T.); (F.M.); (L.V.)
| | - Lorenzo Visconti
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (A.T.); (F.M.); (L.V.)
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (A.T.); (F.M.); (L.V.)
| |
Collapse
|
15
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
16
|
Grasso G. THE USE OF MASS SPECTROMETRY TO STUDY ZN-METALLOPROTEASE-SUBSTRATE INTERACTIONS. MASS SPECTROMETRY REVIEWS 2020; 39:574-585. [PMID: 31898821 DOI: 10.1002/mas.21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates and how environmental factors can affect enzyme activities. In this scenario, mass spectrometric methods occupy a very important role in elucidating different aspects of ZnMPs-substrates interaction. These range from identification of cleavage sites to quantitation of kinetic parameters. In this work, an overview of all the main achievements regarding the application of mass spectrometric methods to investigating ZnMPs-substrates interactions is presented. A general experimental protocol is also described which may prove useful to the study of similar interactions. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, 95125, Italy
| |
Collapse
|
17
|
Lagunes L, Bardwell L, Enciso GA. Effect of magnitude and variability of energy of activation in multisite ultrasensitive biochemical processes. PLoS Comput Biol 2020; 16:e1007966. [PMID: 32760072 PMCID: PMC7444825 DOI: 10.1371/journal.pcbi.1007966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 08/24/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022] Open
Abstract
Protein activity is often regulated by ligand binding or by post-translational modifications such as phosphorylation. Moreover, proteins that are regulated in this way often contain multiple ligand binding sites or modification sites, which can operate to create an ultrasensitive dose response. Here, we consider the contribution of the individual modification/binding sites to the activation process, and how their individual values affect the ultrasensitive behavior of the overall system. We use a generalized Monod-Wyman-Changeux (MWC) model that allows for variable conformational free energy contributions from distinct sites, and associate a so-called activation parameter to each site. Our analysis shows that the ultrasensitivity generally increases as the conformational free energy contribution from one or more sites is strengthened. Furthermore, ultrasensitivity depends on the mean of the activation parameters and not on their variability. In some cases, we find that the best way to maximize ultrasensitivity is to make the contribution from all sites as strong as possible. These results provide insights into the performance objectives of multiple modification/binding sites and thus help gain a greater understanding of signaling and its role in diseases.
Collapse
Affiliation(s)
- Leonila Lagunes
- Developmental and Cell Biology Department, University of California Irvine, California, United States of America
| | - Lee Bardwell
- Developmental and Cell Biology Department, University of California Irvine, California, United States of America
| | - German A. Enciso
- Developmental and Cell Biology Department, University of California Irvine, California, United States of America
- Mathematics Department, University of California Irvine, California, United States of America
| |
Collapse
|
18
|
Horovitz A, Fleisher RC, Mondal T. Double-mutant cycles: new directions and applications. Curr Opin Struct Biol 2019; 58:10-17. [PMID: 31029859 DOI: 10.1016/j.sbi.2019.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Double-mutant cycle (DMC) analysis is a powerful approach for detecting and quantifying the energetics of both direct and long-range interactions in proteins and other chemical systems. It can also be used to unravel higher-order interactions (e.g. three-body effects) that lead to cooperativity in protein folding and function. In this review, we describe new applications of DMC analysis based on advances in native mass spectrometry and high-throughput methods such as next generation sequencing and protein complementation assays. These developments have facilitated carrying out high-throughput DMC analysis, which can be used to characterize increasingly higher-order interactions and very large interaction networks in proteins. Such studies have provided insights into the extent of cooperativity (epistasis) in protein structures. High-throughput DMC studies have also been used to validate correlated mutation analysis and can provide restraints for protein docking.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rachel C Fleisher
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tridib Mondal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Gruber R, Horovitz A. Unpicking allosteric mechanisms of homo-oligomeric proteins by determining their successive ligand binding constants. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0176. [PMID: 29735730 DOI: 10.1098/rstb.2017.0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
Advances in native mass spectrometry and single-molecule techniques have made it possible in recent years to determine the values of successive ligand binding constants for large multi-subunit proteins. Given these values, it is possible to distinguish between different allosteric mechanisms and, thus, obtain insights into how various bio-molecular machines work. Here, we describe for ring-shaped homo-oligomers, in particular, how the relationship between the values of successive ligand binding constants is diagnostic for concerted, sequential and probabilistic allosteric mechanisms.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Abstract
In this book chapter, a practical approach for conducting small angle X-ray scattering (SAXS) experiments is given. Our aim is to guide SAXS users through a three-step process of planning, preparing and performing a basic SAXS measurement. The minimal requirements necessary to prepare samples are described specifically for protein and other macromolecular samples in solution. We address the very important aspects in terms of sample characterization using additional techniques as well as the essential role of accurately subtracting background scattering contributions. At the end of the chapter some advice is given for trouble-shooting problems that may occur during the course of the SAXS measurements. Automated pipelines for data processing are described which are useful in allowing users to evaluate the quality of the data 'on the spot' and consequently react to events such as radiation damage, the presence of unwanted sample aggregates or miss-matched buffers.
Collapse
|
22
|
Changeux JP, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab 2017; 19 Suppl 1:4-21. [PMID: 28880476 DOI: 10.1111/dom.12959] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Animals
- Binding Sites/drug effects
- Dimerization
- Drug Discovery/trends
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Humans
- Ligand-Gated Ion Channels/agonists
- Ligand-Gated Ion Channels/antagonists & inhibitors
- Ligand-Gated Ion Channels/chemistry
- Ligand-Gated Ion Channels/metabolism
- Ligands
- Models, Molecular
- Protein Conformation/drug effects
- Protein Multimerization/drug effects
- Receptor Protein-Tyrosine Kinases/agonists
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Voltage-Gated Sodium Channels/chemistry
- Voltage-Gated Sodium Channels/metabolism
Collapse
Affiliation(s)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia
| |
Collapse
|
23
|
Wang B, Qin Q, Chang M, Li S, Shi X, Xu G. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Anal Bioanal Chem 2017; 410:827-837. [PMID: 28840311 DOI: 10.1007/s00216-017-0564-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
Abstract
Noncovalent interactions between proteins and small-molecule ligands widely exist in biological bodies and play significant roles in many physiological and pathological processes. Native mass spectrometry (MS) has emerged as a new powerful tool to study noncovalent interactions by directly analyzing the ligand-protein complexes. In this work, an ultrahigh-resolution native MS method based on a 15-T SolariX XR Fourier transform ion cyclotron resonance mass spectrometer was firstly used to investigate the interaction between human serum albumin (HSA) and flavonoids. Various flavonoids with similar structure were selected to unravel the relationship between the structure of flavonoids and their binding affinity for HSA. It was found that the position of the hydroxyl groups and double bond of flavonoids could influence the noncovalent interaction. Through a competitive experiment between HSA binding site markers and apigenin, the subdomain IIA (site 1) of HSA was determined as the binding site for flavonoids. Moreover, a cooperative allosteric interaction between apigenin and ibuprofen was found from their different HSA binding sites, which was further verified by circular dichroism spectroscopy and molecular docking studies. These results show that native MS is a useful tool to investigate the molecular interaction between a protein and its ligands. Graphical abstract Unravel the relationship between the structure of flavonoids and their binding affinity to HSA by native MS.
Collapse
Affiliation(s)
- Bohong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| |
Collapse
|
24
|
Measuring inter-protein pairwise interaction energies from a single native mass spectrum by double-mutant cycle analysis. Nat Commun 2017; 8:212. [PMID: 28794496 PMCID: PMC5550451 DOI: 10.1038/s41467-017-00285-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/18/2017] [Indexed: 11/27/2022] Open
Abstract
The strength and specificity of protein complex formation is crucial for most life processes and is determined by interactions between residues in the binding partners. Double-mutant cycle analysis provides a strategy for studying the energetic coupling between amino acids at the interfaces of such complexes. Here we show that these pairwise interaction energies can be determined from a single high-resolution native mass spectrum by measuring the intensities of the complexes formed by the two wild-type proteins, the complex of each wild-type protein with a mutant protein, and the complex of the two mutant proteins. This native mass spectrometry approach, which obviates the need for error-prone measurements of binding constants, can provide information regarding multiple interactions in a single spectrum much like nuclear Overhauser effects (NOEs) in nuclear magnetic resonance. Importantly, our results show that specific inter-protein contacts in solution are maintained in the gas phase. Double mutant cycle (DMC) analyses can provide the interaction energies between amino acids at the interface of protein complexes. Here, the authors determine pairwise interaction energies using high-resolution native mass spectroscopy, offering a straightforward route for the DMC methodology.
Collapse
|
25
|
Sequential allosteric mechanism of ATP hydrolysis by the CCT/TRiC chaperone is revealed through Arrhenius analysis. Proc Natl Acad Sci U S A 2017; 114:5189-5194. [PMID: 28461478 DOI: 10.1073/pnas.1617746114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves." They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively.
Collapse
|
26
|
Li H, Sheng Y, McGee W, Cammarata M, Holden D, Loo JA. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry. Anal Chem 2017; 89:2731-2738. [PMID: 28192979 DOI: 10.1021/acs.analchem.6b02377] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yuewei Sheng
- Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - William McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Michael Cammarata
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Dustin Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Chan DSH, Matak-Vinković D, Coyne AG, Abell C. Insight into Protein Conformation and Subcharging by DMSO from Native Ion Mobility Mass Spectrometry. ChemistrySelect 2016. [DOI: 10.1002/slct.201601402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Shiu-Hin Chan
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Dijana Matak-Vinković
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Anthony G. Coyne
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Chris Abell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW United Kingdom
| |
Collapse
|
28
|
Schueler-Furman O, Wodak SJ. Computational approaches to investigating allostery. Curr Opin Struct Biol 2016; 41:159-171. [PMID: 27607077 DOI: 10.1016/j.sbi.2016.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Allosteric regulation plays a key role in many biological processes, such as signal transduction, transcriptional regulation, and many more. It is rooted in fundamental thermodynamic and dynamic properties of macromolecular systems that are still poorly understood and are moreover modulated by the cellular context. Here we review the computational approaches used in the investigation of allosteric processes in protein systems. We outline how the models of allostery have evolved from their initial formulation in the sixties to the current views, which more fully account for the roles of the thermodynamic and dynamic properties of the system. We then describe the major classes of computational approaches employed to elucidate the mechanisms of allostery, the insights they have provided, as well as their limitations. We complement this analysis by highlighting the role of computational approaches in promising practical applications, such as the engineering of regulatory modules and identifying allosteric binding sites.
Collapse
Affiliation(s)
- Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University, Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | - Shoshana J Wodak
- VIB Structural Biology Research Center, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
29
|
Konijnenberg A, Ranica S, Narkiewicz J, Legname G, Grandori R, Sobott F, Natalello A. Opposite Structural Effects of Epigallocatechin-3-gallate and Dopamine Binding to α-Synuclein. Anal Chem 2016; 88:8468-75. [PMID: 27467405 DOI: 10.1021/acs.analchem.6b00731] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intrinsically disordered and amyloidogenic protein α-synuclein (AS) has been linked to several neurodegenerative states, including Parkinson's disease. Here, nanoelectrospray-ionization mass spectrometry (nano-ESI-MS), ion mobility (IM), and native top-down electron transfer dissociation (ETD) techniques are employed to study AS interaction with small molecules known to modulate its aggregation, such as epigallocatechin-3-gallate (EGCG) and dopamine (DA). The complexes formed by the two ligands under identical conditions reveal peculiar differences. While EGCG engages AS in compact conformations, DA preferentially binds to the protein in partially extended conformations. The two ligands also have different effects on AS structure as assessed by IM, with EGCG leading to protein compaction and DA to its extension. Native top-down ETD on the protein-ligand complexes shows how the different observed modes of binding of the two ligands could be related to their known opposite effects on AS aggregation. The results also show that the protein can bind either ligand in the absence of any covalent modifications, such as oxidation.
Collapse
Affiliation(s)
- Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Simona Ranica
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Joanna Narkiewicz
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A , 34136 Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A , 34136 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, U.K.,School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR of Milano-Bicocca, and Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| |
Collapse
|
30
|
Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell 2016; 166:1084-1102. [DOI: 10.1016/j.cell.2016.08.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
|
31
|
Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21080984. [PMID: 27483215 PMCID: PMC6274484 DOI: 10.3390/molecules21080984] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022] Open
Abstract
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Collapse
|
32
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|