1
|
Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:173-190. [PMID: 38507207 DOI: 10.1007/978-3-031-52193-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Burak V Kabasakal
- School of Biochemistry, University of Bristol, Bristol, UK
- Turkish Accelerator and Radiation Laboratory, Gölbaşı, Ankara, Türkiye
| | | | | |
Collapse
|
2
|
Guo C, Cheng M, Li W, Gross ML. Precursor Reagent Hydrophobicity Affects Membrane Protein Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2700-2710. [PMID: 37967285 PMCID: PMC10924779 DOI: 10.1021/jasms.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Membrane proteins (MPs) play a crucial role in cell signaling, molecular transport, and catalysis and thus are at the heart of designing pharmacological targets. Although structural characterization of MPs at the molecular level is essential to elucidate their biological function, it poses a significant challenge for structural biology. Although mass spectrometry-based protein footprinting may be developed into a powerful approach for studying MPs, the hydrophobic character of membrane regions makes structural characterization difficult using water-soluble footprinting reagents. Herein, we evaluated a small series of MS-based photoactivated iodine reagents with different hydrophobicities. We used tip sonication to facilitate diffusion into micelles, thus enhancing reagent access to the hydrophobic core of MPs. Quantification of the modification extent in hydrophilic extracellular and hydrophobic transmembrane domains provides structurally sensitive information at the residue-level as measured by proteolysis and LC-MS/MS for a model MP, vitamin K epoxide reductase (VKOR). It also reveals a relationship between the reagent hydrophobicity and its preferential labeling sites in the local environment. The outcome should guide the future development of chemical probes for MPs and promote a direction for relatively high-throughput information-rich characterization of MPs in biochemistry and drug discovery.
Collapse
|
3
|
Kang JS, Zhou X, Liu YT, Wang K, Zhou ZH. Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541984. [PMID: 37961330 PMCID: PMC10634880 DOI: 10.1101/2023.05.23.541984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids, but the reasons for such misbehavior are not well understood, limiting systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy - rationalizing the use of surfactant, which is a direct solution to reducing the surface tension of the aqueous solution. By conducting cryogenic electron tomography (cryoET) with the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradual reduction of the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that applicable surfactants do not damage the biological complex, thus suggesting that they might offer a practical, simple, and general solution to the problem for high-resolution cryoEM. Application of this solution to a real-world AWI adsorption problem with a more challenging membrane protein, namely, the ClC-1 channel, has led to its first near-atomic structure using cryoEM.
Collapse
|
4
|
Kang JS, Zhou X, Liu YT, Wang K, Zhou ZH. Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM. BIOPHYSICS REPORTS 2023; 9:215-229. [PMID: 38516618 PMCID: PMC10951471 DOI: 10.52601/bpr.2023.230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 03/23/2024] Open
Abstract
As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids. However, the reasons for such misbehavior are not well understood, which limits systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy-rationalizing the use of surfactant, which is a direct solution to reduce the surface tension of the aqueous solution. By performing cryogenic electron tomography (cryoET) on the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradually reducing the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that suitable surfactants do not damage the biological complex, thus suggesting that they might provide a practical, simple, and general solution to the problem for high-resolution cryoEM. Applying this solution to a real-world AWI adsorption problem involving a more challenging membrane protein, namely, the ClC-1 channel, has resulted in its near-atomic structure determination using cryoEM.
Collapse
Affiliation(s)
- Joon S. Kang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Xueting Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Kaituo Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Tzortzini E, Kolocouris A. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A 2A Adenosine Receptor. Biomolecules 2023; 13:957. [PMID: 37371538 DOI: 10.3390/biom13060957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
6
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
7
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
8
|
Liu J, Yang Y, Liu X, Widjaya AS, Jiang B, Jiang Y. Macrophage-biomimetic anti-inflammatory liposomes for homing and treating of aortic dissection. J Control Release 2021; 337:224-235. [PMID: 34298057 DOI: 10.1016/j.jconrel.2021.07.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 01/27/2023]
Abstract
Aortic dissection (AD) is a life-threatening disease featured by the dissection of intimal layer and the formation of a blood-filled false lumen within the aortic wall. Recent studies revealed that the formation and progression of AD lesions is closely related to vascular inflammation and macrophage infiltration. However, the potential efficacy of anti-inflammatory therapy on the prevention and treatment of AD has not been extensively investigated. Herein, we proposed a biomimetic anti-inflammatory liposome (PM/TN-CCLP) co-loaded with curcumin and celecoxib (CC), modified with cell-penetrating TAT-NBD fusion peptide (TN), and further camouflaged by isolated macrophage plasma membrane (PM), as a potential nanotherapy for AD. In vitro results showed that PM/TN-CCLP exhibited low cytotoxicity and elevated cellular uptake by inflammatory macrophages, and prominently inhibited the transendothelial migration, inflammatory responses and ROS generation of macrophages. Moreover, the PM/TN-CCLP treatment significantly prevented the H2O2-induced smooth muscle cell apoptosis. In vivo experiments were performed on the acute and chronic AD mouse models, respectively. The results verified the elevated accumulation of PM-camouflaged liposome at the aorta lesions. Further, the anti-inflammatory liposomes, especially PM/TN-CCLP, could reduce the rupture rate of dissection, prevent the loss of elastic fibers, and reduce MMP-9 expression as well as macrophage infiltration in the aortic lesions. Notably, as compared with free drugs and TN-CCLP, the PM/TN-CCLP treatment displayed the longest survival period along with the minimal aortic injury on both acute and chronic AD mice. Taken together, the present study suggested that the macrophage-biomimetic anti-inflammatory nanotherapy would be a promising strategy for the prevention and therapy of aortic dissection.
Collapse
Affiliation(s)
- Jingxuan Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueying Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Andy Samuel Widjaya
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Alli-Balogun GO, Levine TP. Fungal Ice2p is in the same superfamily as SERINCs, restriction factors for HIV and other viruses. Proteins 2021; 89:1240-1250. [PMID: 33982326 DOI: 10.1002/prot.26145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Ice2p is an integral endoplasmic reticulum (ER) membrane protein in budding yeast S. cerevisiae named ICE because it is required for Inheritance of Cortical ER. Ice2p has also been reported to be involved in an ER metabolic branch-point that regulates the flux of lipid either to be stored in lipid droplets or to be used as membrane components. Alternately, Ice2p has been proposed to act as a tether that physically bridges the ER at contact sites with both lipid droplets and the plasma membrane via a long loop on the protein's cytoplasmic face that contains multiple predicted amphipathic helices. Here we carried out a bioinformatic analysis to increase understanding of Ice2p. First, regarding topology, we found that diverse members of the fungal Ice2 family have 10 transmembrane helices (TMHs), which places the long loop on the exofacial face of Ice2p, where it cannot form inter-organelle bridges. Second, we identified Ice2p as a full-length homolog of SERINC (serine incorporator), a family of proteins with 10 TMHs found universally in eukaryotes. Since SERINCs are potent restriction factors for HIV and other viruses, study of Ice2p may reveal functions or mechanisms that shed light on viral restriction by SERINCs.
Collapse
Affiliation(s)
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
10
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
11
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
12
|
Lee SC, Collins R, Lin YP, Jamshad M, Broughton C, Harris SA, Hanson BS, Tognoloni C, Parslow RA, Terry AE, Rodger A, Smith CJ, Edler KJ, Ford R, Roper DI, Dafforn TR. Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ. Sci Rep 2019; 9:18712. [PMID: 31822696 PMCID: PMC6904479 DOI: 10.1038/s41598-019-54999-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
The E. coli membrane protein ZipA, binds to the tubulin homologue FtsZ, in the early stage of cell division. We isolated ZipA in a Styrene Maleic Acid lipid particle (SMALP) preserving its position and integrity with native E. coli membrane lipids. Direct binding of ZipA to FtsZ is demonstrated, including FtsZ fibre bundles decorated with ZipA. Using Cryo-Electron Microscopy, small-angle X-ray and neutron scattering, we determine the encapsulated-ZipA structure in isolation, and in complex with FtsZ to a resolution of 1.6 nm. Three regions can be identified from the structure which correspond to, SMALP encapsulated membrane and ZipA transmembrane helix, a separate short compact tether, and ZipA globular head which binds FtsZ. The complex extends 12 nm from the membrane in a compact structure, supported by mesoscale modelling techniques, measuring the movement and stiffness of the regions within ZipA provides molecular scale analysis and visualisation of the early divisome.
Collapse
Affiliation(s)
- Sarah C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Richard Collins
- Faculty of Life Sciences, A4032 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yu-Pin Lin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Claire Broughton
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sarah A Harris
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Cecilia Tognoloni
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rosemary A Parslow
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann E Terry
- MAX IV Laboratory Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Macquarie, NSW, 2109, Australia
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Robert Ford
- Faculty of Life Sciences, A4032 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
LETM1: Essential for Mitochondrial Biology and Cation Homeostasis? Trends Biochem Sci 2019; 44:648-658. [DOI: 10.1016/j.tibs.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
|
14
|
Diwanji D, Thaker T, Jura N. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures. IUBMB Life 2019; 71:706-720. [PMID: 31046201 PMCID: PMC6531341 DOI: 10.1002/iub.2060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
16
|
Bolla JR, Agasid MT, Mehmood S, Robinson CV. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Annu Rev Biochem 2019; 88:85-111. [PMID: 30901263 DOI: 10.1146/annurev-biochem-013118-111508] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
17
|
Oliver RC, Naing SH, Weiss KL, Pingali SV, Lieberman RL, Urban VS. Contrast-Matching Detergent in Small-Angle Neutron Scattering Experiments for Membrane Protein Structural Analysis and Ab Initio Modeling. J Vis Exp 2018:57901. [PMID: 30394373 PMCID: PMC6235576 DOI: 10.3791/57901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The biological small-angle neutron scattering instrument at the High-Flux Isotope Reactor of Oak Ridge National Laboratory is dedicated to the investigation of biological materials, biofuel processing, and bio-inspired materials covering nanometer to micrometer length scales. The methods presented here for investigating physical properties (i.e., size and shape) of membrane proteins (here, MmIAP, an intramembrane aspartyl protease from Methanoculleus marisnigri) in solutions of micelle-forming detergents are well-suited for this small-angle neutron scattering instrument, among others. Other biophysical characterization techniques are hindered by their inability to address the detergent contributions in a protein-detergent complex structure. Additionally, access to the Bio-Deuteration Lab provides unique capabilities for preparing large-scale cultivations and expressing deuterium-labeled proteins for enhanced scattering signal from the protein. While this technique does not provide structural details at high-resolution, the structural knowledge gap for membrane proteins contains many addressable areas of research without requiring near-atomic resolution. For example, these areas include determination of oligomeric states, complex formation, conformational changes during perturbation, and folding/unfolding events. These investigations can be readily accomplished through applications of this method.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory
| | - Swe-Htet Naing
- School of Chemistry and Biochemistry, Georgia Institute of Technology
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory
| | | | | | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory;
| |
Collapse
|
18
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|
19
|
Dias Mirandela G, Tamburrino G, Ivanović MT, Strnad FM, Byron O, Rasmussen T, Hoskisson PA, Hub JS, Zachariae U, Gabel F, Javelle A. Merging In-Solution X-ray and Neutron Scattering Data Allows Fine Structural Analysis of Membrane-Protein Detergent Complexes. J Phys Chem Lett 2018; 9:3910-3914. [PMID: 29939747 DOI: 10.1021/acs.jpclett.8b01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labeled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. First, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS, which has been adapted to predict SANS data. Second, the use of MONSA which allows one to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.
Collapse
Affiliation(s)
- Gaëtan Dias Mirandela
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| | - Giulia Tamburrino
- Computational Biology, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
- Physics, School of Science and Engineering , University of Dundee , Dundee , DD1 4NH , United Kingdom
| | - Miloš T Ivanović
- Theoretical Physics , Saarland University , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Felix M Strnad
- Institute for Microbiology and Genetics , University of Goettingen , Justus-von-Liebig-Weg 11 , 37077 Göttingen , Germany
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , G12 8QQ , United Kingdom
| | - Tim Rasmussen
- School of Medical Sciences , University of Aberdeen , Foresterhill, Aberdeen AB25 2ZD , United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| | - Jochen S Hub
- Theoretical Physics , Saarland University , Campus E2 6 , 66123 Saarbrücken , Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
- Physics, School of Science and Engineering , University of Dundee , Dundee , DD1 4NH , United Kingdom
| | - Frank Gabel
- Institut Laue-Langevin , 71 Avenue des Martyrs 38042 Grenoble , France
- University of Grenoble Alpes, CEA, CNRS, IBS , 38000 Grenoble , France
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , G4 0RE , United Kingdom
| |
Collapse
|
20
|
Dutta M. Recent Advances in Single Particle Cryo-electron Microscopy and Cryo-electron Tomography to Determine the Structures of Biological Macromolecules. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E, Zheng J, Calì T, Gai WP, Chen T, Moeller A, Brini M, Fu Y, Halliday G, Brudek T, Aznar S, Pakkenberg B, Andersen JP, Jensen PH. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep 2018; 19:embr.201744617. [PMID: 29599149 PMCID: PMC5934765 DOI: 10.15252/embr.201744617] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 01/03/2023] Open
Abstract
Aggregation of α‐synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca2+ and α‐synuclein aggregation. Analyses of cell lines and primary culture models of α‐synuclein cytopathology reveal an early phase with reduced cytosolic Ca2+ levels followed by a later Ca2+ increase. Aggregated but not monomeric α‐synuclein binds to and activates SERCA in vitro, and proximity ligation assays confirm this interaction in cells. The SERCA inhibitor cyclopiazonic acid (CPA) normalises both the initial reduction and the later increase in cytosolic Ca2+. CPA protects the cells against α‐synuclein‐aggregate stress and improves viability in cell models and in Caenorhabditis elegans in vivo. Proximity ligation assays also reveal an increased interaction between α‐synuclein aggregates and SERCA in human brains affected by dementia with Lewy bodies. We conclude that α‐synuclein aggregates bind SERCA and stimulate its activity. Reducing SERCA activity is neuroprotective, indicating that SERCA and down‐stream processes may be therapeutic targets for treating α‐synucleinopathies.
Collapse
Affiliation(s)
- Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Louise Berkhoudt Lassen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Olsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rikke Hahn Kofoed
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jin Zheng
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Wei-Ping Gai
- Neuropathological Laboratory, Department of Medicine, Center for Neurological Diseases, University of Adelaide, Adelaide, SA, Australia
| | - Tong Chen
- Department of Medical Biochemistry, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - Arne Moeller
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Structural Biology, Max Plank Institute of Biophysics, Frankfurt, Germany
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Yuhong Fu
- Brain & Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Glenda Halliday
- Brain & Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | | | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark .,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Parmar M, Rawson S, Scarff CA, Goldman A, Dafforn TR, Muench SP, Postis VLG. Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:378-383. [PMID: 28993151 PMCID: PMC5780298 DOI: 10.1016/j.bbamem.2017.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023]
Abstract
The field of membrane protein structural biology has been revolutionized over the last few years with a number of high profile structures being solved using cryo-EM including Piezo, Ryanodine receptor, TRPV1 and the Glutamate receptor. Further developments in the EM field hold the promise of even greater progress in terms of greater resolution, which for membrane proteins is still typically within the 4-7Å range. One advantage of a cryo-EM approach is the ability to study membrane proteins in more "native" like environments for example proteoliposomes, amphipols and nanodiscs. Recently, styrene maleic acid co-polymers (SMA) have been used to extract membrane proteins surrounded by native lipids (SMALPs) maintaining a more natural environment. We report here the structure of the Escherichia coli multidrug efflux transporter AcrB in a SMALP scaffold to sub-nm resolution, with the resulting map being consistent with high resolution crystal structures and other EM derived maps. However, both the C-terminal helix (TM12) and TM7 are poorly defined in the map. These helices are at the exterior of the helical bundle and form the greater interaction with the native lipids and SMA polymer and may represent a more dynamic region of the protein. This work shows the promise of using an SMA approach for single particle cryo-EM studies to provide sub-nm structures.
Collapse
Affiliation(s)
- Mayuriben Parmar
- Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, LS1 3HE, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Charlotte A Scarff
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Adrian Goldman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK; Department of Biosciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK.
| | - Vincent L G Postis
- Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, LS1 3HE, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
23
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
24
|
Structural insights on the dynamics of proteasome formation. Biophys Rev 2017; 10:597-604. [PMID: 29243089 DOI: 10.1007/s12551-017-0381-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.
Collapse
|
25
|
Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:909-926. [PMID: 29113819 DOI: 10.1016/j.bbamem.2017.10.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022]
Abstract
The expansion of computational power, better parameterization of force fields, and the development of novel algorithms to enhance the sampling of the free energy landscapes of proteins have allowed molecular dynamics (MD) simulations to become an indispensable tool to understand the function of biomolecules. The temporal and spatial resolution of MD simulations allows for the study of a vast number of processes of interest. Here, we review the computational efforts to uncover the conformational free energy landscapes of a subset of membrane proteins: ion channels, transporters and G-protein coupled receptors. We focus on the various enhanced sampling techniques used to study these questions, how the conclusions come together to build a coherent picture, and the relationship between simulation outcomes and experimental observables.
Collapse
|
26
|
Manzi L, Barrow AS, Hopper JTS, Kaminska R, Kleanthous C, Robinson CV, Moses JE, Oldham NJ. Carbene Footprinting Reveals Binding Interfaces of a Multimeric Membrane-Spanning Protein. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucio Manzi
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Andrew S. Barrow
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
- Current address: La Trobe Institute for Molecular Science; La Trobe University; Melbourne Victoria 3086 Australia
| | - Jonathan T. S. Hopper
- OMass Technologies Ltd.; Centre for Innovation and Enterprise; Begbroke Science Park, Woodstock Road Oxford OX5 1PF UK
| | - Renata Kaminska
- Department of Biochemistry; University of Oxford; South Parks Road Oxford OX1 3QU UK
| | - Colin Kleanthous
- Department of Biochemistry; University of Oxford; South Parks Road Oxford OX1 3QU UK
| | - Carol V. Robinson
- Chemistry Research Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ UK
| | - John E. Moses
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
- Current address: La Trobe Institute for Molecular Science; La Trobe University; Melbourne Victoria 3086 Australia
| | - Neil J. Oldham
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| |
Collapse
|
27
|
Manzi L, Barrow AS, Hopper JTS, Kaminska R, Kleanthous C, Robinson CV, Moses JE, Oldham NJ. Carbene Footprinting Reveals Binding Interfaces of a Multimeric Membrane-Spanning Protein. Angew Chem Int Ed Engl 2017; 56:14873-14877. [DOI: 10.1002/anie.201708254] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Lucio Manzi
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Andrew S. Barrow
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
- Current address: La Trobe Institute for Molecular Science; La Trobe University; Melbourne Victoria 3086 Australia
| | - Jonathan T. S. Hopper
- OMass Technologies Ltd.; Centre for Innovation and Enterprise; Begbroke Science Park, Woodstock Road Oxford OX5 1PF UK
| | - Renata Kaminska
- Department of Biochemistry; University of Oxford; South Parks Road Oxford OX1 3QU UK
| | - Colin Kleanthous
- Department of Biochemistry; University of Oxford; South Parks Road Oxford OX1 3QU UK
| | - Carol V. Robinson
- Chemistry Research Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ UK
| | - John E. Moses
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
- Current address: La Trobe Institute for Molecular Science; La Trobe University; Melbourne Victoria 3086 Australia
| | - Neil J. Oldham
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| |
Collapse
|
28
|
Elmlund D, Le SN, Elmlund H. High-resolution cryo-EM: the nuts and bolts. Curr Opin Struct Biol 2017; 46:1-6. [DOI: 10.1016/j.sbi.2017.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/02/2017] [Indexed: 01/27/2023]
|
29
|
Leelananda SP, Lindert S. Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities. J Chem Theory Comput 2017; 13:5131-5145. [PMID: 28949136 DOI: 10.1021/acs.jctc.7b00464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Knowing atomistic details of proteins is essential not only for the understanding of protein function but also for the development of drugs. Experimental methods such as X-ray crystallography, NMR, and cryo-electron microscopy (cryo-EM) are the preferred forms of protein structure determination and have achieved great success over the most recent decades. Computational methods may be an alternative when experimental techniques fail. However, computational methods are severely limited when it comes to predicting larger macromolecule structures with little sequence similarity to known structures. The incorporation of experimental restraints in computational methods is becoming increasingly important to more reliably predict protein structure. One such experimental input used in structure prediction and refinement is cryo-EM densities. Recent advances in cryo-EM have arguably revolutionized the field of structural biology. Our previously developed cryo-EM-guided Rosetta-MD protocol has shown great promise in the refinement of soluble protein structures. In this study, we extended cryo-EM density-guided iterative Rosetta-MD to membrane proteins. We also improved the methodology in general by picking models based on a combination of their score and fit-to-density during the Rosetta model selection. By doing so, we have been able to pick models superior to those with the previous selection based on Rosetta score only and we have been able to further improve our previously refined models of soluble proteins. The method was tested with five membrane spanning protein structures. By applying density-guided Rosetta-MD iteratively we were able to refine the predicted structures of these membrane proteins to atomic resolutions. We also showed that the resolution of the density maps determines the improvement and quality of the refined models. By incorporating high-resolution density maps (∼4 Å), we were able to more significantly improve the quality of the models than when medium-resolution maps (6.9 Å) were used. Beginning from an average starting structure root mean square deviation (RMSD) to native of 4.66 Å, our protocol was able to refine the structures to bring the average refined structure RMSD to 1.66 Å when 4 Å density maps were used. The protocol also successfully refined the HIV-1 CTD guided by an experimental 5 Å density map.
Collapse
Affiliation(s)
- Sumudu P Leelananda
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Veith K, Martinez Molledo M, Almeida Hernandez Y, Josts I, Nitsche J, Löw C, Tidow H. Lipid-like Peptides can Stabilize Integral Membrane Proteins for Biophysical and Structural Studies. Chembiochem 2017; 18:1735-1742. [PMID: 28603929 PMCID: PMC5601290 DOI: 10.1002/cbic.201700235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Indexed: 12/30/2022]
Abstract
A crucial bottleneck in membrane protein structural biology is the difficulty in identifying a detergent that can maintain the stability and functionality of integral membrane proteins (IMPs). Detergents are poor membrane mimics, and their common use in membrane protein crystallography may be one reason for the challenges in obtaining high-resolution crystal structures of many IMP families. Lipid-like peptides (LLPs) have detergent-like properties and have been proposed as alternatives for the solubilization of G protein-coupled receptors and other membrane proteins. Here, we systematically analyzed the stabilizing effect of LLPs on integral membrane proteins of different families. We found that LLPs could significantly stabilize detergent-solubilized IMPs in vitro. This stabilizing effect depended on the chemical nature of the LLP and the intrinsic stability of a particular IMP in the detergent. Our results suggest that screening a subset of LLPs is sufficient to stabilize a particular IMP, which can have a substantial impact on the crystallization and quality of the crystal.
Collapse
Affiliation(s)
- Katharina Veith
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Yasser Almeida Hernandez
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Julius Nitsche
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetScheeles väg 217177StockholmSweden
| | - Henning Tidow
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| |
Collapse
|
31
|
Opara N, Martiel I, Arnold SA, Braun T, Stahlberg H, Makita M, David C, Padeste C. Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717005799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new era of protein crystallography started when X-ray free-electron lasers (XFELs) came into operation, as these provide an intense source of X-rays that facilitates data collection in the `diffract-before-destroy' regime. In typical experiments, crystals sequentially delivered to the beam are exposed to X-rays and destroyed. Therefore, the novel approach of serial crystallography requires thousands of nearly identical samples. Currently applied sample-delivery methods, in particular liquid jets or drop-on-demand systems, suffer from significant sample consumption of the precious crystalline material. Direct protein microcrystal growth by the vapour diffusion technique inside arrays of nanolitre-sized wells is a method specifically tailored to crystallography at XFELs. The wells, with X-ray transparent Si3N4windows as bottoms, are fabricated in silicon chips. Their reduced dimensions can significantly decrease protein specimen consumption. Arrays provide crystalline samples positioned in an ordered way without the need to handle fragile crystals. The nucleation process inside these microfabricated cavities was optimized to provide high membrane coverage and a quasi-random crystal distribution. Tight sealing of the chips and protection of the crystals from dehydration were achieved, as confirmed by diffraction experiments at a protein crystallography beamline. Finally, the test samples were shown to be suitable for time-resolved measurements at an XFEL at femtosecond resolution.
Collapse
|
32
|
Vénien-Bryan C, Li Z, Vuillard L, Boutin JA. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr F Struct Biol Commun 2017; 73:174-183. [PMID: 28368275 PMCID: PMC5379166 DOI: 10.1107/s2053230x17003740] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 Å resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 Å resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (>500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryo-electron microscopy-based determination of structures at very high resolution.
Collapse
Affiliation(s)
- Catherine Vénien-Bryan
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Zhuolun Li
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Vuillard
- Chimie des Protéines, Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean Albert Boutin
- Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
33
|
Abstract
Membrane proteins are involved in a large variety of functions. Most of these protein functions are regulated by ligand binding with diverse modes of action: agonists, partial agonists, antagonists, and allosteric modulators, potentiators and inhibitors. From the pharmacological point of view, membrane proteins are one if not the major target for drug development. However, experimental structure determination of membrane proteins in complex or in free form still represents a great challenge. Molecular dynamics (MD) simulations commonly reach the microsecond scale on membrane systems. This numerical tool is mature enough to predict and add molecular details on the different ligand-binding modes. In the present chapter, I will present the different steps to design, simulate, and analyze a MD simulation system containing a protein embedded in a membrane and surrounded by water and ligand. As an illustration, the simulation of the ligand-gated ion channel γ-aminobutyric acid type A receptor (GABAAR) surrounded by one of its allosteric potentiators, bromoform, will be presented and discussed.
Collapse
Affiliation(s)
- Samuel Murail
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, University Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, F-75005, Paris, France.
- Air Liquide, Centre de Recherches Paris-Saclay, Boite Postale 126, Les Loges-en-Josas, Jouy-en-Josas, 78354, France.
| |
Collapse
|
34
|
Maity S, Marchesi A, Torre V, Mazzolini M. Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy. ACS OMEGA 2016; 1:1205-1219. [PMID: 31457189 PMCID: PMC6640748 DOI: 10.1021/acsomega.6b00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 06/10/2023]
Abstract
The determination at atomic resolution of the three-dimensional molecular structure of membrane proteins such as receptors and several ion channels has been a major breakthrough in structural biology. The molecular structure of several members of the superfamily of voltage-gated ionic channels such as K+ and Na+ is now available. However, despite several attempts, the molecular structure at atomic resolution of the full cyclic nucleotide-gated (CNG) ion channel, although a member of the same superfamily of voltage-gated ion channels, has not been obtained yet, neither by X-ray crystallography nor by electron cryomicroscopy (cryo-EM). It is possible that CNG channels have a high structural heterogeneity, making difficult crystallization and single-particle analysis. To address this issue, we have combined single-molecule force spectroscopy (SMFS) and electrophysiological experiments to characterize the structural heterogeneity of CNGA1 channels expressed in Xenopus laevis oocytes. The unfolding of the cytoplasmic domain had force peaks, occurring with a probability from 0.2 to 0.96. Force peaks during the unfolding of the transmembrane domain had a probability close to 1, but the distribution of the increase in contour length between two successive force peaks had multiple maxima differing by tens of nanometers. Concomitant electrophysiological experiments showed that the rundown in mutant channels S399C is highly variable and that the effect of thiol reagents when specific residues were mutated was consistent with a dynamic structural heterogeneity. These results show that CNGA1 channels have a wide spectrum of native conformations that are difficult to detect with X-ray crystallography and cryo-EM.
Collapse
|
35
|
Liko I, Allison TM, Hopper JT, Robinson CV. Mass spectrometry guided structural biology. Curr Opin Struct Biol 2016; 40:136-144. [PMID: 27721169 DOI: 10.1016/j.sbi.2016.09.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/08/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
Abstract
With the convergence of breakthroughs in structural biology, specifically breaking the resolution barriers in cryo-electron microscopy and with continuing developments in crystallography, novel interfaces with other biophysical methods are emerging. Here we consider how mass spectrometry can inform these techniques by providing unambiguous definition of subunit stoichiometry. Moreover recent developments that increase mass spectral resolution enable molecular details to be ascribed to unassigned density within high-resolution maps of membrane and soluble protein complexes. Importantly we also show how developments in mass spectrometry can define optimal solution conditions to guide downstream structure determination, particularly of challenging biomolecules that refuse to crystallise.
Collapse
Affiliation(s)
- Idlir Liko
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Jonathan Ts Hopper
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom.
| |
Collapse
|
36
|
Boutin JA, Li Z, Vuillard L, Vénien-Bryan C. [Cryo-microscopy, an alternative to the X-ray crystallography?]. Med Sci (Paris) 2016; 32:758-67. [PMID: 27615185 DOI: 10.1051/medsci/20163208025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent technological advances have revolutionized the field of structural biologists. Specifically, dramatic progress related to the development of new electron microscopes and image capture (direct electron detection camera) and the provision of new image analysis software has led to a breakthrough in terms of resolution attained using cryo-electron transmission microscopy. It is thus possible to calculate relatively quickly high-resolution structures of biological molecules whom structural study still resists to more conventional methods such as X-ray diffraction or nuclear magnetic resonance (NMR). These structures thus obtained may also bring complementary structural information to those already described by other methods. Some of these new structures resolved through cryo-electron microscopy revealed for the first time the precise operation of essential mechanisms necessary for the good physiological process of a cell. The ability to solve these structures at atomic resolution detail is essential for the development of new drugs that target these proteins of therapeutic interest. Thanks to these advanced techniques that we summarize in this revew, biological and medical issues have now become accessible, whereas this approach was inconceivable only five yeras ago. ‡.
Collapse
Affiliation(s)
- Jean A Boutin
- Pôle d'expertise Biotechnologie, Chimie et Biologie, Institut de Recherches Servier, 125, chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Zhuolun Li
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 7590, CNRS, UPMC, IRD, MNHN, 75005 Paris, France
| | - Laurent Vuillard
- Pôle d'expertise Biotechnologie, Chimie et Biologie, Institut de Recherches Servier, 125, chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Catherine Vénien-Bryan
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 7590, CNRS, UPMC, IRD, MNHN, 75005 Paris, France
| |
Collapse
|
37
|
Abstract
AbstractThere has been enormous progress during the last few years in the determination of three-dimensional biological structures by single particle electron cryomicroscopy (cryoEM), allowing maps to be obtained with higher resolution and from fewer images than required previously. This is due principally to the introduction of a new type of direct electron detector that has 2- to 3-fold higher detective quantum efficiency than available previously, and to the improvement of the computational algorithms for image processing. In spite of the great strides that have been made, quantitative analysis shows that there are still significant gains to be made provided that the problems associated with image degradation can be solved, possibly by minimising beam-induced specimen movement and charge build up during imaging. If this can be achieved, it should be possible to obtain near atomic resolution structures of smaller single particles, using fewer images and resolving more conformational states than at present, thus realising the full potential of the method. The recent popularity of cryoEM for molecular structure determination also highlights the need for lower cost microscopes, so we encourage development of an inexpensive, 100 keV electron cryomicroscope with a high-brightness field emission gun to make the method accessible to individual groups or institutions that cannot afford the investment and running costs of a state-of-the-art 300 keV installation. A key requisite for successful high-resolution structure determination by cryoEM includes interpretation of images and optimising the biochemistry and grid preparation to obtain nicely distributed macromolecules of interest. We thus include in this review a gallery of cryoEM micrographs that shows illustrative examples of single particle images of large and small macromolecular complexes.
Collapse
|
38
|
Vermaas JV, Trebesch N, Mayne CG, Thangapandian S, Shekhar M, Mahinthichaichan P, Baylon JL, Jiang T, Wang Y, Muller MP, Shinn E, Zhao Z, Wen PC, Tajkhorshid E. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation. Methods Enzymol 2016; 578:373-428. [PMID: 27497175 PMCID: PMC6404235 DOI: 10.1016/bs.mie.2016.05.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory.
Collapse
Affiliation(s)
- J V Vermaas
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - N Trebesch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - C G Mayne
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - S Thangapandian
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - M Shekhar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Mahinthichaichan
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J L Baylon
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - T Jiang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - M P Muller
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Shinn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Z Zhao
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P-C Wen
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
39
|
Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2390-2400. [PMID: 26946244 DOI: 10.1016/j.bbamem.2016.02.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 11/22/2022]
Abstract
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterization of these sites are of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|