1
|
Jayasekera HS, Mohona FA, De Jesus MJ, Miller KM, Marty MT. Alanine Scanning to Define Membrane Protein-Lipid Interaction Sites Using Native Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620105. [PMID: 39484449 PMCID: PMC11527333 DOI: 10.1101/2024.10.24.620105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipids surrounding membrane proteins interact with different sites on the protein at varying specificities, ranging from highly specific to weak interactions. These interactions can modulate the structure, function, and stability of membrane proteins. Thus, to better understand membrane protein structure and function, it is important to identify the locations of lipid binding and the relative specificities of lipid binding at these sites. In our previous native mass spectrometry (MS) study, we developed a single and double mutant analysis approach to profile the contribution of specific residues toward lipid binding. Here, we extend this method by screening a broad range of mutants of AqpZ to identify specific lipid binding sites and by measuring binding of different lipid types to measure the selectivity of different lipids at selected binding sites. We complemented these native MS studies with molecular dynamics (MD) simulations to visualize lipid interactions at selected sites. We discovered that AqpZ is selective towards cardiolipins (CL) but only at specific sites. Specifically, CL orients with its headgroup facing the cytoplasmic side, and its acyl chains interact with a hydrophobic pocket located at the monomeric interface within the lipid bilayer. Overall, this integrative approach provides unique insights into lipid binding sites and the selectivity of various lipids towards AqpZ, enabling us to map the AqpZ protein structure based on the lipid affinity.
Collapse
Affiliation(s)
| | | | - Madison J. De Jesus
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Katherine M. Miller
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
2
|
Jayasekera HS, Mohona FA, Ewbank M, Marty MT. Simultaneous Native Mass Spectrometry Analysis of Single and Double Mutants To Probe Lipid Binding to Membrane Proteins. Anal Chem 2024; 96:10426-10433. [PMID: 38859611 PMCID: PMC11215972 DOI: 10.1021/acs.analchem.4c01704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Lipids are critical modulators of membrane protein structure and function. However, it is challenging to investigate the thermodynamics of protein-lipid interactions because lipids can simultaneously bind membrane proteins at different sites with different specificities. Here, we developed a native mass spectrometry (MS) approach using single and double mutants to measure the relative energetic contributions of specific residues on Aquaporin Z (AqpZ) toward cardiolipin (CL) binding. We first mutated potential lipid-binding residues on AqpZ, and mixed mutant and wild-type proteins together with CL. By using native MS to simultaneously resolve lipid binding to the mutant and wild-type proteins in a single spectrum, we directly determined the relative affinities of CL binding, thereby revealing the relative Gibbs free energy change for lipid binding caused by the mutation. Comparing different mutants revealed that W14 contributes to the tightest CL binding site, with R224 contributing to a lower affinity site. Using double mutant cycling, we investigated the synergy between W14 and R224 sites on CL binding. Overall, this novel native MS approach provides unique insights into the binding of lipids to specific sites on membrane proteins.
Collapse
Affiliation(s)
- Hiruni S. Jayasekera
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Farhana Afrin Mohona
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Megan Ewbank
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Michael T. Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
3
|
Tripathy M, Srivastava A. Non-affine deformation analysis and 3D packing defects: A new way to probe membrane heterogeneity in molecular simulations. Methods Enzymol 2024; 701:541-577. [PMID: 39025582 DOI: 10.1016/bs.mie.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here, we discuss a new framework developed over the last 5 years in our group to probe nanoscale membrane heterogeneity. The framework is based on the idea of characterizing lateral heterogeneity through non-affine deformation (NAD) measurements, transverse heterogeneity through three dimensional (3D) lipid packing defects, and using these approaches to formalize the seemingly trivial correlation between lateral organization and lipid packing in biological membranes. We find that measurements from NAD analysis, a prescription which is borrowed from Physics of glasses and granular material, can faithfully distinguish between liquid-ordered and disordered phases in membranes at molecular length scales and, can also be used to identify phase boundaries with high precision. Concomitantly, 3D-packing defects can not only distinguish between the two co-existing fluid phases based on their molecular scale packing (or membrane free volume), but also provide a route to connect the membrane domains to their functionality, such as exploring the molecular origins of inter-leaflet domain registration and peptide partitioning. The correlation between lateral membrane order and transverse packing presents novel molecular design-level features that can explain functions such as protein/peptide partitioning and small-molecule permeation dynamics in complex and heterogeneous membranes with high-fidelity. The framework allows us to explore the nature of lateral organization and molecular packing as a manifestation of intricate molecular interactions among a chemically rich variety of lipids and other molecules in a membrane with complex membrane composition and asymmetry across leaflets.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany.
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Umegawa Y, Kato S, Seo S, Shinoda W, Kawatake S, Matsuoka S, Murata M. Protein-lipid acyl chain interactions: Depth-dependent changes of segmental mobility of phospholipid in contact with bacteriorhodopsin. Biophys Chem 2024; 308:107204. [PMID: 38412762 DOI: 10.1016/j.bpc.2024.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein-lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106-2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein-peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.
Collapse
Affiliation(s)
- Yuichi Umegawa
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Sho Kato
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Division of Supercomputing, Korea Institute of Science and Technology Information, 245 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Research Institute for Interdisciplinary Science, Okayama University, 3-1-1, Tsushima-naka, Okayama 700-8530, Japan
| | - Satoshi Kawatake
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Antollini SS, Barrantes FJ. Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research. Molecules 2024; 29:820. [PMID: 38398572 PMCID: PMC10893188 DOI: 10.3390/molecules29040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.
Collapse
Affiliation(s)
- Silvia S. Antollini
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, BIOMED UCA-CONICET, Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
6
|
Jayasekera HS, Mohona FA, Ewbank M, Marty MT. SIMULTANEOUS NATIVE MASS SPECTROMETRY ANALYSIS OF SINGLE AND DOUBLE MUTANTS TO PROBE LIPID BINDING TO MEMBRANE PROTEINS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558516. [PMID: 37781586 PMCID: PMC10541089 DOI: 10.1101/2023.09.19.558516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Lipids are critical modulators of membrane protein structure and function. However, it is challenging to investigate the thermodynamics of protein-lipid interactions because lipids can simultaneously bind membrane proteins at different sites with different specificities. Here, we developed a native mass spectrometry (MS) approach using single and double mutants to measure the relative energetic contributions of specific residues on Aquaporin Z (AqpZ) toward cardiolipin (CL) binding. We first mutated potential lipid-binding residues on AqpZ, and mixed mutant and wild-type proteins together with CL. By using native MS to simultaneously resolve lipid binding to the mutant and wild-type proteins in a single spectrum, we directly determined the relative affinities of CL binding, thereby revealing the relative Gibbs free energy change for lipid binding caused by the mutation. Comparing different mutants revealed that the W14 contributes to the tightest CL binding site, with R224 contributing to a lower affinity site. Using double mutant cycling, we investigated the synergy between W14 and R224 sites on CL binding. Overall, this novel native MS approach provides unique insights into lipid binding to specific sites on membrane proteins.
Collapse
Affiliation(s)
- Hiruni S. Jayasekera
- [a] Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Farhana Afrin Mohona
- [a] Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Megan Ewbank
- [a] Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Michael T. Marty
- [a] Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
7
|
Kundlacz T, Schmidt C. Deciphering Solution and Gas-Phase Interactions between Peptides and Lipids by Native Mass Spectrometry. Anal Chem 2023; 95:17292-17299. [PMID: 37956985 PMCID: PMC10688224 DOI: 10.1021/acs.analchem.3c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Many biological processes depend on the interactions between proteins and lipids. Accordingly, the analysis of protein-lipid complexes has become increasingly important. Native mass spectrometry is often used to identify and characterize specific protein-lipid interactions. However, it requires the transfer of the analytes into the gas phase, where electrostatic interactions are enhanced and hydrophobic interactions do not exist. Accordingly, the question remains whether interactions that are observed in the gas phase accurately reflect interactions that are formed in solution. Here, we systematically explore noncovalent interactions between the antimicrobial peptide LL-37 and glycerophospholipids containing different headgroups or varying in fatty acyl chain length. We observe differences in peak intensities for different peptide-lipid complexes, as well as their relative binding strength in the gas phase. Accordingly, we found that ion intensities and gas-phase stability correlate well for complexes formed by electrostatic interactions. Probing hydrophobic interactions by varying the length of fatty acyl chains, we detected differences in ion intensities based on hydrophobic interactions formed in solution. The relative binding strength of these peptide-lipid complexes revealed only minor differences originating from van der Waals interactions and different binding modes of lipid headgroups in solution. In summary, our results demonstrate that hydrophobic interactions are reflected by ion intensities, while electrostatic interactions, including van der Waals interactions, determine the gas-phase stability of complexes.
Collapse
Affiliation(s)
- Til Kundlacz
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Institute
of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry—Biochemistry, Johannes
Gutenberg University Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
8
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
9
|
Mohole M, Sengupta D, Chattopadhyay A. Synergistic and Competitive Lipid Interactions in the Serotonin 1A Receptor Microenvironment. ACS Chem Neurosci 2022; 13:3403-3415. [PMID: 36351047 DOI: 10.1021/acschemneuro.2c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad201 002, India.,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad500 007, India
| |
Collapse
|
10
|
Membrane lipid organization and nicotinic acetylcholine receptor function: A two-way physiological relationship. Arch Biochem Biophys 2022; 730:109413. [DOI: 10.1016/j.abb.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
11
|
Sicoli G, Konijnenberg A, Guérin J, Hessmann S, Del Nero E, Hernandez-Alba O, Lecher S, Rouaut G, Müggenburg L, Vezin H, Cianférani S, Sobott F, Schneider R, Jacob-Dubuisson F. Large-Scale Conformational Changes of FhaC Provide Insights Into the Two-Partner Secretion Mechanism. Front Mol Biosci 2022; 9:950871. [PMID: 35936790 PMCID: PMC9355242 DOI: 10.3389/fmolb.2022.950871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane β barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein’s surface loops. Specifically, our data indicate that an amphipathic POTRA2 β hairpin can insert into the β barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.
Collapse
Affiliation(s)
- Giuseppe Sicoli
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | | | - Jérémy Guérin
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Elise Del Nero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Sophie Lecher
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Guillaume Rouaut
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Linn Müggenburg
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Hervé Vezin
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Schneider
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| | - Françoise Jacob-Dubuisson
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| |
Collapse
|
12
|
Keener JE, Jayasekera HS, Marty MT. Investigating the Lipid Selectivity of Membrane Proteins in Heterogeneous Nanodiscs. Anal Chem 2022; 94:8497-8505. [PMID: 35621361 DOI: 10.1021/acs.analchem.2c01488] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure and function of membrane proteins can be significantly impacted by the surrounding lipid environment, but membrane protein-lipid interactions in lipid bilayers are often difficult to study due to their transient and polydisperse nature. Here, we used two native mass spectrometry (MS) approaches to investigate how the Escherichia coli ammonium transporter trimer (AmtB) and aquaporin Z (AqpZ) selectively remodel their local lipid environment in heterogeneous lipoprotein nanodiscs. First, we used gas-phase ejection to isolate the membrane protein with bound lipids from heterogeneous nanodiscs with different combinations of lipids. Second, we used solution-phase detergent extraction as an orthogonal approach to study membrane protein remodeling of lipids in the nanodisc with native MS. Our results showed that Triton X-100 and lauryldimethylamine oxide retain lipid selectivity that agrees with gas-phase ejection, but C8E4 distorts some preferential lipid interactions. Both approaches reveal that AmtB has a few selective binding sites for phosphatidylcholine (PC) lipids, is selective for binding phosphatidylglycerols (PG) overall, and is nonselective for phosphatidylethanolamines (PE). In contrast, AqpZ prefers either PC or PG over PE and prefers PC over PG. Overall, these experiments provide a picture of how membrane proteins bind different lipid head groups in the context of mixed lipid bilayers.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Hiruni S Jayasekera
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
14
|
Maer AM, Rusinova R, Providence LL, Ingólfsson HI, Collingwood SA, Lundbæk JA, Andersen OS. Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Front Physiol 2022; 13:836789. [PMID: 35350699 PMCID: PMC8957996 DOI: 10.3389/fphys.2022.836789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
15
|
Swansiger AK, Marty MT, Prell JS. Fourier-Transform Approach for Reconstructing Macromolecular Mass Defect Profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:172-180. [PMID: 34913687 DOI: 10.1021/jasms.1c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
State-of-the-art native mass spectrometry (MS) methods have been developed for analysis of highly heterogeneous intact complexes and have provided much insight into the structure and properties of noncovalent assemblies that can be difficult to study using denatured proteins. These native MS methods can often be used to study even highly polydisperse membrane proteins embedded in detergent micelles, nanodiscs, and other membrane mimics. However, characterizing highly polydisperse native complexes which are also heterogeneous presents additional challenges for native MS. Macromolecular mass defect (MMD) analysis aims to characterize heterogeneous ion populations obfuscated by adduct polydispersity and reveal the distribution of "base" masses, and was recently implemented in the Bayesian analysis software UniDec. Here, we illustrate an alternative, orthogonal MMD analysis method implemented in the deconvolution program iFAMS, which takes advantage of Fourier transform (FT) to deconvolve low-resolution data with few user-input parameters and which can provide high quality results even for mass spectra with a signal-to-noise ratio of ∼5:1. Agreement between this method, which is based on frequency-domain data, and the mass-domain algorithm of UniDec provides strong evidence that both methods can accurately characterize highly polydisperse and heterogeneous ion populations. The FT algorithm is expected to be very useful in characterizing many types of analytes ranging from membrane proteins to polymer-conjugated proteins, branched polymers, and other large analytes, as well as for reconstructing isotope profiles for highly complex but still isotope-resolved mass spectra.
Collapse
Affiliation(s)
- Andrew K Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
16
|
Targeting MmpL3 for anti-tuberculosis drug development. Biochem Soc Trans 2021; 48:1463-1472. [PMID: 32662825 PMCID: PMC7458404 DOI: 10.1042/bst20190950] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Collapse
|
17
|
Deng Z, Yuan B, Yang K. Cardiolipin Selectively Binds to the Interface of VsSemiSWEET and Regulates Its Dimerization. J Phys Chem Lett 2021; 12:1940-1946. [PMID: 33591759 DOI: 10.1021/acs.jpclett.1c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid-regulated oligomerization of membrane proteins plays a critical role in many cell-transduction pathways. However, molecular details of such processes are often hard to define experimentally. Here we reveal the key role of interfacial cardiolipin in regulating the functional dimerization of VsSemiSWEET (one of the smallest transporters) using molecular dynamics simulations. Four binding sites for cardiolipins are identified by calculating the spatiotemporal density distribution of cardiolipins and the free energy surface. Two types of dimerization modes (i.e., arm-to-body and body-to-body) are observed in the assembly process of VsSemiSWEET protomers. Binding of enough cardiolipin molecules at the dimer interface on the cytoplasmic side is found to be crucial in adjusting the monomer-dimer equilibrium and regulating the formation of functional dimers with proper conformation. Our results provide useful information on the relationship between lipid binding and functional dimerization of VsSemiSWEET and are helpful to understand the molecular mechanism of biological function of sugar transporters.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P.R. China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P.R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P.R. China
| |
Collapse
|
18
|
Fantin SM, Huang H, Sanders CR, Ruotolo BT. Collision-Induced Unfolding Differentiates Functional Variants of the KCNQ1 Voltage Sensor Domain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2348-2355. [PMID: 32960579 PMCID: PMC8106873 DOI: 10.1021/jasms.0c00288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The KCNQ1 voltage-gated potassium channel regulates the repolarization of cardiac cells, and a plurality of point mutations in its voltage-sensing domain (VSD) are associated with toxic gain or loss of pore function, resulting in disease. As is the case with many disease-associated membrane proteins, there are hundreds of human variants of interest identified for KCNQ1; however, a significant portion of these variants have not been characterized in relation to their functional and disease associations. Additionally, as the VSD consists of four transmembrane helices, studies into dynamic structural differences among KCNQ1 VSD variants are hindered by the current limitations and deficits in the high-resolution structure determination of membrane proteins. Here, we use native ion mobility-mass spectrometry and collision-induced unfolding (CIU) to address the need for a high throughput-compatible method for the structural characterization of membrane protein variants of unknown significance using the KCNQ1 VSD as a model system. We perform CIU on wild-type and three mutant KCNQ1 VSD forms associated with the toxic gain or loss of function and show through both automated feature detection and comprehensive difference analysis of the CIU data sets that the variants are clearly grouped by function and disease association. We also construct a classification scheme based on the CIU data sets, which is able to differentiate the variant functional groups and classify a recently characterized variant to its correct grouping. Further, we probe the stability of the KCNQ1 VSD variants when liberated from C12E8 micelles at pH 8.0 and find preliminary evidence that the R231C mutation associated with the gain of the pore function is destabilized relative to the wild-type and loss of function variants.
Collapse
Affiliation(s)
- Sarah M. Fantin
- University of Michigan Department of Chemistry, Ann Arbor, Michigan 48109, United States
| | - Hui Huang
- Vanderbilt University, Department of Biochemistry, Nashville, Tennessee 37232, United States
| | - Charles R. Sanders
- Vanderbilt University, Department of Biochemistry, Nashville, Tennessee 37232, United States
| | - Brandon T. Ruotolo
- University of Michigan Department of Chemistry, Ann Arbor, Michigan 48109, United States
- Corresponding Author:
| |
Collapse
|
19
|
Iyer SS, Srivastava A. Degeneracy in molecular scale organization of biological membranes. SOFT MATTER 2020; 16:6752-6764. [PMID: 32628232 DOI: 10.1039/d0sm00619j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The scale-rich spatiotemporal organization in biological membranes has its origin in the differential inter- and intra-molecular interactions among their constituents. In this work, we explore the molecular-origin behind that variety and possible degeneracy in lateral organization in membranes. For our study, we post-process microsecond long all-atom molecular dynamics trajectories for three systems that exhibit fluid phase coexistence: (i) PSM/POPC/Chol (0.47/0.32/0.21), (ii) PSM/DOPC/Chol (0.43/0.38/0.19) and (iii) DPPC/DOPC/Chol (0.37/0.36/0.27). To distinguish the liquid ordered and disordered regions at molecular scales, we calculate the degree of non-affineness of individual lipids in their neighbourhood and track their topological rearrangements. Disconnectivity graph analysis with respect to membrane organization shows that the DPPC/DOPC/Chol and PSM/DOPC/Chol systems exhibit funnel-like energy landscapes as opposed to a highly frustrated energy landscape for the more biomimetic PSM/POPC/Chol system. We use these measurements to develop a continuous lattice Hamiltonian and evolve that using Monte Carlo simulated annealing to explore the possibility of structural degeneracy in membrane organization. Our data show that model membranes with lipid constituents that are biomimetic (PSM/POPC/Chol) have the ability to access a large range of membrane sub-structure space (higher degeneracy) as compared to the other two systems, which form only one kind of substructure even with changing composition. Since the spatiotemporal organization in biological membranes dictates the "molecular encounters" and in turn larger scale biological processes such as molecular transport, trafficking and cellular signalling, we posit that this structural degeneracy could enable access to a larger repository to functionally important molecular organization in systems with physiologically relevant compositions.
Collapse
Affiliation(s)
- Sahithya S Iyer
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
20
|
Xia T, Ren H, Zhang W, Xia Y. Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on CC location level. Anal Chim Acta 2020; 1128:107-115. [PMID: 32825894 DOI: 10.1016/j.aca.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are two essential classes of glycerophospholipids (GPs), playing versatile roles such as signalling messengers and lipid-protein interaction ligands in cell. Although a majority of PG and PI molecular species contain unsaturated fatty acyl chain(s), conventional tandem mass spectrometry (MS/MS) methods cannot discern isomers different in carbon-carbon double bond (CC) locations. In this work, we paired phosphate methylation with acetone Paternò-Büchi (PB) reaction, aiming to provide a solution for sensitive and structurally informative analysis of these two important classes of GPs down to the location of CC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow was established. Offline methylated PG or PI mixtures were subjected to hydrophilic interaction chromatographic separation, online acetone PB reaction, and MS/MS via collision-induced dissociation (CID) for CC location determination in positive ion mode. This method was sensitive, offering limit of identification at 5 nM for both PG and PI standards down to CC locations. On molecular species level, 49 PI and 31 PG were identified from bovine liver, while 61 PIs were identified from human plasma. This workflow also enabled ratiometric comparisons of CC location isomers (C18:1 Δ9 vs. Δ11) of a series of PIs from type 2 diabetes (T2D) plasma to that of normal plasma samples. PI 16:0_18:1 and PI 18:0_18:1 were found to exhibit significant changes in CC isomeric ratios between T2D and normal plasma samples. The above results demonstrate that the developed LC-PB-MS/MS workflow is applicable to different classes of lipids and compatible with other established lipid derivatization methods to achieve comprehensive lipid analysis.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Phan MD, Korotych OI, Brady NG, Davis MM, Satija SK, Ankner JF, Bruce BD. X-ray and Neutron Reflectivity Studies of Styrene-Maleic Acid Copolymer Interactions with Galactolipid-Containing Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3970-3980. [PMID: 32207953 DOI: 10.1021/acs.langmuir.9b03817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Styrene-maleic acid (SMA) copolymers have recently gained attention for their ability to facilitate the detergent-free solubilization of membrane protein complexes and their native boundary lipids into polymer-encapsulated, nanosized lipid particles, referred to as SMALPs. However, the interfacial interactions between SMA and lipids, which dictate the mechanism, efficiency, and selectivity of lipid and membrane protein extraction, are barely understood. Our recent finding has shown that SMA 1440, a chemical derivative of the SMA family with a functionalized butoxyethanol group, was most active in galactolipid-rich membranes, as opposed to phospholipid membranes. In the present work, we have performed X-ray reflectometry (XRR) and neutron reflectometry (NR) on the lipid monolayers at the liquid-air interface followed by the SMA copolymer adsorption. XRR and Langmuir Π-A isotherms captured the fluidifying effect of galactolipids, which allowed SMA copolymers to infiltrate easily into the lipid membranes. NR results revealed the detailed structural arrangement of SMA 1440 copolymers within the membranes and highlighted the partition of butoxyethanol group into the lipid tail region. This work allows us to propose a possible mechanism for the membrane solubilization by SMA.
Collapse
Affiliation(s)
- Minh D Phan
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Olena I Korotych
- Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37966, United States
| | - Nathan G Brady
- Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37966, United States
| | - Madeline M Davis
- Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37966, United States
| | - Sushil K Satija
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John F Ankner
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Barry D Bruce
- Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37966, United States
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee 37966, United States
| |
Collapse
|
22
|
Bolla JR, Corey RA, Sahin C, Gault J, Hummer A, Hopper JTS, Lane DP, Drew D, Allison TM, Stansfeld PJ, Robinson CV, Landreh M. A Mass‐Spectrometry‐Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jani Reddy Bolla
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Robin A. Corey
- Department of BiochemistryUniversity of Oxford South Parks Road Oxford OX1 3QU UK
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet 17165 Solna Sweden
- Department of BiologyUniversity of Copenhagen Copenhagen N 2200 Denmark
| | - Joseph Gault
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Alissa Hummer
- Department of BiochemistryUniversity of Oxford South Parks Road Oxford OX1 3QU UK
| | - Jonathan T. S. Hopper
- OMass Therapeutics The Oxford Science Park, The Schrödinger Building Kidlington OX4 4GE UK
| | - David P. Lane
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet 17165 Solna Sweden
| | - David Drew
- Department of Biochemistry and BiophysicsStockholm University 10691 Stockholm Sweden
| | - Timothy M. Allison
- Biomolecular Interaction Centre and School of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8140 New Zealand
| | - Phillip J. Stansfeld
- Department of BiochemistryUniversity of Oxford South Parks Road Oxford OX1 3QU UK
- School of Life Sciences & Department of ChemistryUniversity of Warwick Coventry CV4 7AL UK
| | - Carol V. Robinson
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet 17165 Solna Sweden
| |
Collapse
|
23
|
Bolla JR, Corey RA, Sahin C, Gault J, Hummer A, Hopper JTS, Lane DP, Drew D, Allison TM, Stansfeld PJ, Robinson CV, Landreh M. A Mass-Spectrometry-Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angew Chem Int Ed Engl 2020; 59:3523-3528. [PMID: 31886601 PMCID: PMC7065234 DOI: 10.1002/anie.201914411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/29/2019] [Indexed: 01/21/2023]
Abstract
Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Robin A. Corey
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet17165SolnaSweden
- Department of BiologyUniversity of CopenhagenCopenhagen N2200Denmark
| | - Joseph Gault
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Alissa Hummer
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
| | - Jonathan T. S. Hopper
- OMass TherapeuticsThe Oxford Science Park, The Schrödinger BuildingKidlingtonOX4 4GEUK
| | - David P. Lane
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet17165SolnaSweden
| | - David Drew
- Department of Biochemistry and BiophysicsStockholm University10691StockholmSweden
| | - Timothy M. Allison
- Biomolecular Interaction Centre and School of Physical and Chemical SciencesUniversity of CanterburyChristchurch8140New Zealand
| | - Phillip J. Stansfeld
- Department of BiochemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QUUK
- School of Life Sciences & Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Carol V. Robinson
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska Institutet17165SolnaSweden
| |
Collapse
|
24
|
Bender J, Schmidt C. Mass spectrometry of membrane protein complexes. Biol Chem 2020; 400:813-829. [PMID: 30956223 DOI: 10.1515/hsz-2018-0443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
Membrane proteins are key players in the cell. Due to their hydrophobic nature they require solubilising agents such as detergents or membrane mimetics during purification and, consequently, are challenging targets in structural biology. In addition, their natural lipid environment is crucial for their structure and function further hampering their analysis. Alternative approaches are therefore required when the analysis by conventional techniques proves difficult. In this review, we highlight the broad application of mass spectrometry (MS) for the characterisation of membrane proteins and their interactions with lipids. We show that MS unambiguously identifies the protein and lipid components of membrane protein complexes, unravels their three-dimensional arrangements and further provides clues of protein-lipid interactions.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| |
Collapse
|
25
|
Fantin SM, Parson KF, Niu S, Liu J, Polasky DA, Dixit SM, Ferguson-Miller SM, Ruotolo BT. Collision Induced Unfolding Classifies Ligands Bound to the Integral Membrane Translocator Protein. Anal Chem 2019; 91:15469-15476. [PMID: 31743004 DOI: 10.1021/acs.analchem.9b03208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane proteins represent most current therapeutic targets, yet remain understudied due to their insolubility in aqueous solvents and generally low yields during purification and expression. Ion mobility-mass spectrometry and collision induced unfolding experiments have recently garnered attention as methods capable of directly detecting and quantifying ligand binding within a wide range of membrane protein systems. Despite prior success, ionized surfactant often creates chemical noise patterns resulting in significant challenges surrounding the study of small membrane protein-ligand complexes. Here, we present a new data analysis workflow that overcomes such chemical noise and then utilize this approach to quantify and classify ligand binding associated with the 36 kDa dimer of translocator protein (TSPO). Following our denoising protocol, we detect separate gas-phase unfolding signatures for lipid and protoporphyrin TSPO binders, molecular classes that likely interact with separate regions of the protein surface. Further, a detailed classification analysis reveals that lipid alkyl chain saturation levels can be detected within our gas-phase protein unfolding data. We combine these data and classification schemes with mass spectra acquired directly from liquid-liquid extracts to propose an identity for a previously unknown endogenous TSPO ligand.
Collapse
Affiliation(s)
- Sarah M Fantin
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Kristine F Parson
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Shuai Niu
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Daniel A Polasky
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sugyan M Dixit
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Shelagh M Ferguson-Miller
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Brandon T Ruotolo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
26
|
Pannuzzo M, Szała B, Raciti D, Raudino A, Ferrarini A. Helical Inclusions in Phospholipid Membranes: Lipid Adaptation and Chiral Order. J Phys Chem Lett 2019; 10:5629-5633. [PMID: 31487187 DOI: 10.1021/acs.jpclett.9b02252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lipid bilayer is a flexible matrix that is able to adapt in response to the perturbation induced by inclusions, such as peptides and proteins. Here we use molecular dynamics simulations with a coarse-grained model to investigate the effect of a helical inclusion on a lipid bilayer in the liquid disordered phase. We show that the helical inclusion induces a collective tilt of acyl chains, with a small, yet unambiguous difference between a right- and a left-handed inclusion. This behavior is rationalized using the elastic continuum theory: The magnitude of the chiral (twist) deformation of the bilayer is determined by the interaction at the lipid/inclusion interface, and the decay length is controlled by the elastic properties of the bilayer. The lipid reorganization can thus be identified as a generic mechanism that, together with specific interactions, contributes to chiral recognition in phospholipid bilayers. An enhanced response is expected in highly ordered environments, such as rafts in biomembranes, with a potential impact on membrane-mediated interactions between inclusions.
Collapse
Affiliation(s)
- Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , via Morego, 30 , 16163 Genova , Italy
| | - Beata Szała
- Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy
- Faculty of Chemistry , Adam Mickiewicz University in Poznań , Umultowska 89b , 61-614 Poznań , Poland
| | - Domenica Raciti
- Department of Chemical Sciences , University of Catania , Viale A. Doria, 6 , 95125 Catania , Italy
| | - Antonio Raudino
- Department of Chemical Sciences , University of Catania , Viale A. Doria, 6 , 95125 Catania , Italy
| | - Alberta Ferrarini
- Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy
| |
Collapse
|
27
|
Campuzano IDG, Robinson JH, Hui JO, Shi SDH, Netirojjanakul C, Nshanian M, Egea PF, Lippens JL, Bagal D, Loo JA, Bern M. Native and Denaturing MS Protein Deconvolution for Biopharma: Monoclonal Antibodies and Antibody-Drug Conjugates to Polydisperse Membrane Proteins and Beyond. Anal Chem 2019; 91:9472-9480. [PMID: 31194911 PMCID: PMC6703902 DOI: 10.1021/acs.analchem.9b00062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a ubiquitously used analytical method applied across multiple departments in biopharma, ranging from early research discovery to process development. Accurate, efficient, and consistent protein MS spectral deconvolution across multiple instrument and detector platforms (time-of-flight, Orbitrap, Fourier-transform ion cyclotron resonance) is essential. When proteins are ionized during the ESI process, a distribution of consecutive multiply charged ions are observed on the m/z scale, either positive [M + nH]n+ or negative [M - nH]n- depending on the ionization polarity. The manual calculation of the neutral molecular weight (MW) of single proteins measured by ESI-MS is simple; however, algorithmic deconvolution is required for more complex protein mixtures to derive accurate MWs. Multiple deconvolution algorithms have evolved over the past two decades, all of which have their advantages and disadvantages, in terms of speed, user-input parameters (or ideally lack thereof), and whether they perform optimally on proteins analyzed under denatured or native-MS and solution conditions. Herein, we describe the utility of a parsimonious deconvolution algorithm (explaining the observed spectra with a minimum number of masses) to process a wide range of highly diverse biopharma relevant and research grade proteins and complexes (PEG-GCSF; an IgG1k; IgG1- and IgG2-biotin covalent conjugates; the membrane protein complex AqpZ; a highly polydisperse empty MSP1D1 nanodisc and the tetradecameric chaperone protein complex GroEL) analyzed under native-MS, denaturing LC-MS, and positive and negative modes of ionization, using multiple instruments and therefore multiple data formats. The implementation of a comb filter and peak sharpening option is also demonstrated to be highly effective for deconvolution of highly polydisperse and enhanced separation of a low level lysine glycation post-translational modification (+162.1 Da), partially processed heavy chain lysine residues (+128.1 Da), and loss of N-acetylglucosamine (GlcNAc; -203.1 Da).
Collapse
Affiliation(s)
- Iain D. G. Campuzano
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John H. Robinson
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - John O. Hui
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Stone D.-H. Shi
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Chawita Netirojjanakul
- Amgen Discovery Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Michael Nshanian
- University of California-Los Angeles, Dept. Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| | - Pascal F. Egea
- University of California-Los Angeles, Dept. Biological Chemistry, Los Angeles, CA, USA
| | - Jennifer L. Lippens
- Amgen Discovery Research, Discovery Attribute Sciences, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Dhanashri Bagal
- Amgen Discovery Research, Discovery Attribute Sciences, Veterans Ways, South San Francisco, CA, 94080, USA
| | - Joseph A. Loo
- Amgen Discovery Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
- University of California-Los Angeles, Dept. Biological Chemistry, Los Angeles, CA, USA
| | | |
Collapse
|
28
|
Frick M, Schmidt C. Mass spectrometry—A versatile tool for characterising the lipid environment of membrane protein assemblies. Chem Phys Lipids 2019; 221:145-157. [DOI: 10.1016/j.chemphyslip.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
|
29
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
30
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
31
|
Manna M, Nieminen T, Vattulainen I. Understanding the Role of Lipids in Signaling Through Atomistic and Multiscale Simulations of Cell Membranes. Annu Rev Biophys 2019; 48:421-439. [DOI: 10.1146/annurev-biophys-052118-115553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell signaling controls essentially all cellular processes. While it is often assumed that proteins are the key architects coordinating cell signaling, recent studies have shown more and more clearly that lipids are also involved in signaling processes in a number of ways. Lipids do, for instance, act as messengers, modulate membrane receptor conformation and dynamics, and control membrane receptor partitioning. Further, through structural modifications such as oxidation, the functions of lipids as part of signaling processes can be modified. In this context, in this article we discuss the understanding recently revealed by atomistic and coarse-grained computer simulations of nanoscale processes and underlying physicochemical principles related to lipids’ functions in cellular signaling.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Tuomo Nieminen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
32
|
Schumann-Gillett A, Blyth MT, O’Mara ML. Is protein structure enough? A review of the role of lipids in SLC6 transporter function. Neurosci Lett 2019; 700:64-69. [DOI: 10.1016/j.neulet.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
|
33
|
Lipid Modulation of Membrane Protein Function. Cell Chem Biol 2019; 25:803-804. [PMID: 30028973 DOI: 10.1016/j.chembiol.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the last decade, native mass spectrometry has emerged as a powerful tool for studying the interactions of lipids and other small molecules with integral membrane proteins and their complexes. In this issue of Cell Chemical Biology, Pyle et al. (2018) establishes the role of phosphatidyl-inositol in dimerization and activity of a eukaryotic purine transporter (UapA).
Collapse
|
34
|
Bolla JR, Agasid MT, Mehmood S, Robinson CV. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Annu Rev Biochem 2019; 88:85-111. [PMID: 30901263 DOI: 10.1146/annurev-biochem-013118-111508] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
35
|
Teo ACK, Lee SC, Pollock NL, Stroud Z, Hall S, Thakker A, Pitt AR, Dafforn TR, Spickett CM, Roper DI. Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Sci Rep 2019; 9:1813. [PMID: 30755655 PMCID: PMC6372662 DOI: 10.1038/s41598-018-37962-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Biological characterisation of membrane proteins lags behind that of soluble proteins. This reflects issues with the traditional use of detergents for extraction, as the surrounding lipids are generally lost, with adverse structural and functional consequences. In contrast, styrene maleic acid (SMA) copolymers offer a detergent-free method for biological membrane solubilisation to produce SMA-lipid particles (SMALPs) containing membrane proteins together with their surrounding lipid environment. We report the development of a reverse-phase LC-MS/MS method for bacterial phospholipids and the first comparison of the profiles of SMALP co-extracted phospholipids from three exemplar bacterial membrane proteins with different topographies: FtsA (associated membrane protein), ZipA (single transmembrane helix), and PgpB (integral membrane protein). The data showed that while SMA treatment per se did not preferentially extract specific phospholipids from the membrane, SMALP-extracted ZipA showed an enrichment in phosphatidylethanolamines and depletion in cardiolipins compared to the bulk membrane lipid. Comparison of the phospholipid profiles of the 3 SMALP-extracted proteins revealed distinct lipid compositions for each protein: ZipA and PgpB were similar, but in FtsA samples longer chain phosphatidylglycerols and phosphatidylethanolamines were more abundant. This method offers novel information on the phospholipid interactions of these membrane proteins.
Collapse
Affiliation(s)
- Alvin C K Teo
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry, CV4 7AL, UK
| | - Sarah C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Naomi L Pollock
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zoe Stroud
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stephen Hall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alpesh Thakker
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David I Roper
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
36
|
Sharp L, Salari R, Brannigan G. Boundary lipids of the nicotinic acetylcholine receptor: Spontaneous partitioning via coarse-grained molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:887-896. [PMID: 30664881 DOI: 10.1016/j.bbamem.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
Reconstituted nicotinic acetylcholine receptors (nAChRs) exhibit significant gain-of-function upon addition of cholesterol to reconstitution mixtures, and cholesterol affects the organization of nAChRs within domain-forming membranes, but whether nAChR partitions to cholesterol-rich liquid-ordered ("raft" or lo) domains or cholesterol-poor liquid-disordered (ldo) domains is unknown. We use coarse-grained molecular dynamics simulations to observe spontaneous interactions of cholesterol, saturated lipids, and polyunsaturated (PUFA) lipids with nAChRs. In binary Dipalmitoylphosphatidylcholine:Cholesterol (DPPC:CHOL) mixtures, both CHOL and DPPC acyl chains were observed spontaneously entering deep "non-annular" cavities in the nAChR TMD, particularly at the subunit interface and the β subunit center, facilitated by the low amino acid density in the cryo-EM structure of nAChR in a native membrane. Cholesterol was highly enriched in the annulus around the TMD, but this effect extended over (at most) 5-10 Å. In domain-forming ternary mixtures containing PUFAs, the presence of a single receptor did not significantly affect the likelihood of domain formation. nAChR partitioned to any cholesterol-poor ldo domain that was present, regardless of whether the ldo or lo domain lipids had PC or PE headgroups. Enrichment of PUFAs among boundary lipids was positively correlated with their propensity for demixing from cholesterol-rich phases. Long n-3 chains (tested here with Docosahexaenoic Acid, DHA) were highly enriched in annular and non-annular embedded sites, partially displacing cholesterol and completely displacing DPPC, and occupying sites even deeper within the bundle. Shorter n-6 chains were far less effective at displacing cholesterol from non-annular sites.
Collapse
Affiliation(s)
- Liam Sharp
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, United States of America
| | - Reza Salari
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, United States of America
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, United States of America; Department of Physics, Rutgers University-Camden, Camden, NJ, United States of America.
| |
Collapse
|
37
|
Reid DJ, Diesing JM, Miller MA, Perry SM, Wales JA, Montfort WR, Marty MT. MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:118-127. [PMID: 29667162 PMCID: PMC6192864 DOI: 10.1007/s13361-018-1951-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/23/2018] [Accepted: 03/10/2018] [Indexed: 05/11/2023]
Abstract
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica M Diesing
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Matthew A Miller
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Scott M Perry
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
38
|
Membrane protein nanoparticles: the shape of things to come. Biochem Soc Trans 2018; 46:1495-1504. [PMID: 30464048 PMCID: PMC6299238 DOI: 10.1042/bst20180139] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
The use of styrene–maleic acid (SMA) for the purification of a wide range of membrane proteins (MPs) from both prokaryotic and eukaryotic sources has begun to make an impact in the field of MP biology. This method is growing in popularity as a means to purify and thoroughly investigate the structure and function of MPs and biological membranes. The amphiphilic SMA copolymer can effectively extract MPs directly from a native lipid bilayer to form discs ∼10 nm in diameter. The resulting lipid particles, or styrene–maleic acid lipid particles (SMALPs), contain SMA, protein and membrane lipid. MPs purified in SMALPs are able to retain their native structure and, in many cases, functional activity, and growing evidence suggests that MPs purified using SMA have enhanced thermal stability compared with detergent-purified proteins. The SMALP method is versatile and is compatible with a wide range of cell types across taxonomic domains. It can readily be adapted to replace detergent in many protein purification methods, often with only minor changes made to the existing protocol. Moreover, biophysical analysis and structural determination may now be a possibility for many large, unstable MPs. Here, we review recent advances in the area of SMALP purification and how it is affecting the field of MP biology, critically assess recent progress made with this method, address some of the associated technical challenges which may remain unresolved and discuss opportunities for exploiting SMALPs to expand our understanding of structural and functional properties of MPs.
Collapse
|
39
|
Zhou K, Dichlberger A, Martinez-Seara H, Nyholm TKM, Li S, Kim YA, Vattulainen I, Ikonen E, Blom T. A Ceramide-Regulated Element in the Late Endosomal Protein LAPTM4B Controls Amino Acid Transporter Interaction. ACS CENTRAL SCIENCE 2018; 4:548-558. [PMID: 29806001 PMCID: PMC5968438 DOI: 10.1021/acscentsci.7b00582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 05/22/2023]
Abstract
Membrane proteins are functionally regulated by the composition of the surrounding lipid bilayer. The late endosomal compartment is a central site for the generation of ceramide, a bioactive sphingolipid, which regulates responses to cell stress. The molecular interactions between ceramide and late endosomal transmembrane proteins are unknown. Here, we uncover in atomistic detail the ceramide interaction of Lysosome Associated Protein Transmembrane 4B (LAPTM4B), implicated in ceramide-dependent cell death and autophagy, and its functional relevance in lysosomal nutrient signaling. The ceramide-mediated regulation of LAPTM4B depends on a sphingolipid interaction motif and an adjacent aspartate residue in the protein's third transmembrane (TM3) helix. The interaction motif provides the preferred contact points for ceramide while the neighboring membrane-embedded acidic residue confers flexibility that is subject to ceramide-induced conformational changes, reducing TM3 bending. This facilitates the interaction between LAPTM4B and the amino acid transporter heavy chain 4F2hc, thereby controlling mTORC signaling. These findings provide mechanistic insights into how transmembrane proteins sense and respond to ceramide.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Andrea Dichlberger
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Hector Martinez-Seara
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
- Laboratory
of Physics, Tampere University of Technology, 33101 Tampere, Finland
| | - Thomas K. M. Nyholm
- Biochemistry,
Faculty of Science and Engineering, Åbo
Akademi University, 20520 Turku, Finland
| | - Shiqian Li
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Young Ah Kim
- Department
of Chemistry and Biochemistry, Queens College,
City University of New York, Flushing, New York 11367, United States
| | - Ilpo Vattulainen
- Laboratory
of Physics, Tampere University of Technology, 33101 Tampere, Finland
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Elina Ikonen
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Tomas Blom
- Department
of Anatomy, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Minerva
Foundation Institute for Medical Research, 00290 Helsinki, Finland
- E-mail: . Phone: +358-50-4484795
| |
Collapse
|
40
|
Gupta K, Li J, Liko I, Gault J, Bechara C, Wu D, Hopper JTS, Giles K, Benesch JLP, Robinson CV. Identifying key membrane protein lipid interactions using mass spectrometry. Nat Protoc 2018; 13:1106-1120. [PMID: 29700483 PMCID: PMC6049616 DOI: 10.1038/nprot.2018.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins. The protocol begins with recording of the native mass spectrum of the protein of interest, under successive delipidation conditions, to determine whether delipidation leads to disruption of the oligomeric state. Subsequently, we propose using a bipronged strategy: first, an HE-nMS platform is used that allows dissociation of the detergent micelle at the front end of the instrument. This allows for isolation of the protein-lipid complex at the quadrupole and successive fragmentation at the collision cell, which leads to identification of the bound lipid masses. Next, simultaneous coupling of this with in-solution LC-MS/MS-based identification of extracted lipids reveals the complete identity of the interacting lipidome that copurifies with the proteins. Assimilation of the results of these two sets of experiments divulges the complete identity of the set of lipids that directly interact with the membrane protein of interest, and can further delineate its role in maintaining the oligomeric state of the protein. The entire procedure takes 2 d to complete.
Collapse
Affiliation(s)
- Kallol Gupta
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jingwen Li
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Idlir Liko
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Cherine Bechara
- Department of Chemistry, University of Oxford, Oxford, UK
- Institut de Genomique Fonctionnelle, CNRS UMR-5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
41
|
Abstract
Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein-lipid assemblies. Despite this inherent complexity, the identification of specific protein-lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88-118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid-protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.
Collapse
|
42
|
Politis A, Schmidt C. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. J Proteomics 2018; 175:34-41. [DOI: 10.1016/j.jprot.2017.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
|
43
|
Ray A, Gräter F, Thukral L. Probing molecular forces in multi-component physiological membranes. Phys Chem Chem Phys 2018; 20:2155-2161. [PMID: 29177331 DOI: 10.1039/c7cp05981g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Biological membranes are remarkably heterogeneous, composed of diverse lipid mixtures with distinct chemical structure and composition. By combining molecular dynamics simulations and the newly developed Lipid-Force Distribution Analysis (L-FDA), we explore force transmission in complex multi-component membrane models mimicking eukaryotic organelles. We found that the chemical-moiety based segmentation at membrane interfaces revealed a distinctive distribution of bonded and non-bonded forces in diverse membrane environment. Our molecular stress analysis could have far-reaching implications in describing the relationship between membrane mechanical properties and functional states of chemically distinct lipids.
Collapse
Affiliation(s)
- Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.
| | | | | |
Collapse
|
44
|
Mostyn SN, Carland JE, Shimmon S, Ryan RM, Rawling T, Vandenberg RJ. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2. ACS Chem Neurosci 2017; 8:1949-1959. [PMID: 28574249 DOI: 10.1021/acschemneuro.7b00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.
Collapse
Affiliation(s)
- Shannon N. Mostyn
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Jane E. Carland
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Susan Shimmon
- School
of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Renae M. Ryan
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School
of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Robert J. Vandenberg
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Ter Beek J, Kahle M, Ädelroth P. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1951-1961. [PMID: 28668220 DOI: 10.1016/j.bbamem.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/03/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O2-binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O2, and found that the pKa of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed.
Collapse
Affiliation(s)
- Josy Ter Beek
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
46
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Briones R, Aponte-Santamaría C, de Groot BL. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects. Front Physiol 2017; 8:124. [PMID: 28303107 PMCID: PMC5332469 DOI: 10.3389/fphys.2017.00124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.
Collapse
Affiliation(s)
- Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Camilo Aponte-Santamaría
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies and Interdisciplinary Center for Scientific Computing Heidelberg, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
48
|
The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 2017; 541:421-424. [PMID: 28077870 DOI: 10.1038/nature20820] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.
Collapse
|
49
|
Landreh M, Marklund EG, Uzdavinys P, Degiacomi MT, Coincon M, Gault J, Gupta K, Liko I, Benesch JLP, Drew D, Robinson CV. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na +/H + antiporters. Nat Commun 2017; 8:13993. [PMID: 28071645 PMCID: PMC5234078 DOI: 10.1038/ncomms13993] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022] Open
Abstract
Na+/H+ antiporters are found in all kingdoms of life and exhibit catalysis rates that are among the fastest of all known secondary-active transporters. Here we combine ion mobility mass spectrometry and molecular dynamics simulations to study the conformational stability and lipid-binding properties of the Na+/H+ exchanger NapA from Thermus thermophilus and compare this to the prototypical antiporter NhaA from Escherichia coli and the human homologue NHA2. We find that NapA and NHA2, but not NhaA, form stable dimers and do not selectively retain membrane lipids. By comparing wild-type NapA with engineered variants, we show that the unfolding of the protein in the gas phase involves the disruption of inter-domain contacts. Lipids around the domain interface protect the native fold in the gas phase by mediating contacts between the mobile protein segments. We speculate that elevator-type antiporters such as NapA, and likely NHA2, use a subset of annular lipids as structural support to facilitate large-scale conformational changes within the membrane.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Erik G. Marklund
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
- Department of Chemistry–BMC, Uppsala University, Box 576, Uppsala SE-751 23, Sweden
| | - Povilas Uzdavinys
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Matteo T. Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Mathieu Coincon
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Joseph Gault
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Kallol Gupta
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Idlir Liko
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Justin L. P. Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Carol V. Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| |
Collapse
|
50
|
Abstract
Membrane proteins play critical physiological roles and make up the majority of drug targets. Due to their generally low expression levels and amphipathic nature, membrane proteins represent challenging molecular entities for biophysical study. Mass spectrometry offers several sensitive approaches to study the biophysics of membrane proteins. By preserving noncovalent interactions in the gas phase and using collisional activation to remove solubilization agents inside the mass spectrometer, native mass spectrometry (MS) is capable of studying isolated assemblies that would be insoluble in aqueous solution, such as membrane protein oligomers and protein-lipid complexes. Conventional methods use detergent to solubilize the protein prior to electrospray ionization. Gas-phase activation inside the mass spectrometer removes the detergent to yield the isolated proteins with bound ligands. This approach has proven highly successful for ionizing membrane proteins. With the appropriate choice of detergents, membrane proteins with bound lipid species can be observed, which allows characterization of protein-lipid interactions. However, detergents have several limitations. They do not necessarily replicate the native lipid bilayer environment, and only a small number of protein-lipid interactions can be resolved. In this Account, we summarize the development of different membrane mimetics as cassettes for MS analysis of membrane proteins. Examples include amphipols, bicelles, and picodiscs with a special emphasis on lipoprotein nanodiscs. Polydispersity and heterogeneity of the membrane mimetic cassette is a critical issue for study by MS. Ever more complex data sets consisting of overlapping protein charge states and multiple lipid-bound entities have required development of new computational, theoretical, and experimental approaches to interpret both mass and ion mobility spectra. We will present the rationale and limitations of these approaches. Starting with the early work on empty nanodiscs, we chart developments that culminate in recent high-resolution studies of membrane protein-lipid complexes ejected from nanodiscs. For the latter, increasing collision energies allowed progressive removal of nanodisc components, beginning with the scaffold proteins and continuing through successive shells of lipids, allowing direct characterization of the stoichiometry of the annular lipid belt that surrounds the membrane protein. We consider future directions for the study of membrane proteins in membrane mimetics, including the development of mixed lipid systems and native bilayer environments. Unambiguous assignment of these heterogeneous systems will rely heavily upon further enhancements in both data analysis protocols and instrumental resolution. We anticipate that these developments will provide new insights into the factors that control dynamic protein-lipid interactions in a variety of tailored and natural lipid environments.
Collapse
Affiliation(s)
- Michael T. Marty
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85719 (USA)
| | - Kin Kuan Hoi
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
| |
Collapse
|