1
|
Gaur V, Kumar N, Vyas A, Chowdhury D, Singh J, Bera S. Identification of potential inhibitors against Escherichia coli Mur D enzyme to combat rising drug resistance: an in-silico approach. J Biomol Struct Dyn 2025; 43:3286-3296. [PMID: 38149858 DOI: 10.1080/07391102.2023.2297007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Indiscriminate use of anti-microbial agents has resulted in the inception, frequency, and spread of antibiotic resistance among targeted bacterial pathogens and the commensal flora. Mur enzymes, playing a crucial role in cell-wall synthesis, are one of the most appropriate targets for developing novel inhibitors against antibiotic-resistant bacterial pathogens. In the present study, in-silico high-throughput virtual (HTVS) and Standard-Precision (SP) screening was carried out with 0.3 million compounds from several small-molecule libraries against the E. coli Mur D enzyme (PDB ID 2UUP). The docked complexes were further subjected to extra-precision (XP) docking calculations, and highest Glide-score compound was further subjected to molecular simulation studies. The top six virtual hits (S1-S6) displayed a glide score (G-score) within the range of -9.013 to -7.126 kcal/mol and compound S1 was found to have the highest stable interactions with the Mur D enzyme (2UUP) of E. coli. The stability of compound S1 with the Mur D (2UUP) complex was validated by a 100-ns molecular dynamics simulation. Binding free energy calculation by the MM-GBSA strategy of the S1-2UUP (Mur D) complex established van der Waals, hydrogen bonding, lipophilic, and Coulomb energy terms as significant favorable contributors for ligand binding. The final lead molecules were subjected to ADMET predictions to study their pharmacokinetic properties and displayed promising results, except for certain modifications required to improve QPlogHERG values. So, the compounds screened against the Mur D enzyme can be further studied as preparatory points for in-vivo studies to develop potential drugs. HIGHLIGHTSE.coli is a common cause of urinary tract infections.E.coli MurD enzyme is a suitable target for drug development.Novel inhibitors against E.coli MurD enzyme were identified.Molecular dynamics studies identified in-silico potential of identified compound.ADMET predictions and Lipinski's rule of five studies showed promising results.
Collapse
Affiliation(s)
- Vinita Gaur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' University, Udaipur, Rajasthan, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Debabrata Chowdhury
- School of Medicine - Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| |
Collapse
|
2
|
Oliveira SSC, Correia CA, Santos VS, da Cunha EFF, de Castro AA, Ramalho TC, Devereux M, McCann M, Branquinha MH, Santos ALS. Silver(I) and Copper(II) 1,10-Phenanthroline-5,6-dione Complexes as Promising Antivirulence Strategy against Leishmania: Focus on Gp63 (Leishmanolysin). Trop Med Infect Dis 2023; 8:348. [PMID: 37505644 PMCID: PMC10384183 DOI: 10.3390/tropicalmed8070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Leishmaniasis, caused by protozoa of the genus Leishmania, encompasses a group of neglected diseases with diverse clinical and epidemiological manifestations that can be fatal if not adequately and promptly managed/treated. The current chemotherapy options for this disease are expensive, require invasive administration and often lead to severe side effects. In this regard, our research group has previously reported the potent anti-Leishmania activity of two coordination compounds (complexes) derived from 1,10-phenanthroline-5,6-dione (phendione): [Cu(phendione)3].(ClO4)2.4H2O and [Ag(phendione)2].ClO4. The present study aimed to evaluate the effects of these complexes on leishmanolysin (gp63), a virulence factor produced by all Leishmania species that plays multiple functions and is recognized as a potential target for antiparasitic drugs. The results showed that both Ag-phendione (-74.82 kcal/mol) and Cu-phendione (-68.16 kcal/mol) were capable of interacting with the amino acids comprising the active site of the gp63 protein, exhibiting more favorable interaction energies compared to phendione alone (-39.75 kcal/mol) or 1,10-phenanthroline (-45.83 kcal/mol; a classical gp63 inhibitor) as judged by molecular docking assay. The analysis of kinetic parameters using the fluorogenic substrate Z-Phe-Arg-AMC indicated Vmax and apparent Km values of 0.064 µM/s and 14.18 µM, respectively, for the released gp63. The effects of both complexes on gp63 proteolytic activity were consistent with the in silico assay, where Ag-phendione exhibited the highest gp63 inhibition capacity against gp63, with an IC50 value of 2.16 µM and the lowest inhibitory constant value (Ki = 5.13 µM), followed by Cu-phendione (IC50 = 163 µM and Ki = 27.05 µM). Notably, pretreatment of live L. amazonensis promastigotes with the complexes resulted in a significant reduction in the expression of gp63 protein, including the isoforms located on the parasite cell surface. Both complexes markedly decreased the in vitro association indexes between L. amazonensis promastigotes and THP-1 human macrophages; however, this effect was reversed by the addition of soluble gp63 molecules to the interaction medium. Collectively, our findings highlight the potential use of these potent complexes in antivirulence therapy against Leishmania, offering new insights for the development of effective treatments for leishmaniasis.
Collapse
Affiliation(s)
- Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Claudyane A Correia
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Vanessa S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Elaine F F da Cunha
- Laboratório de Modelagem Molecular, Departamento de Química, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Alexandre A de Castro
- Laboratório de Modelagem Molecular, Departamento de Química, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Teodorico C Ramalho
- Laboratório de Modelagem Molecular, Departamento de Química, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Michael Devereux
- The Centre for Biomimetic & Therapeutic Research, Focas Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
| | - Malachy McCann
- Chemistry Department, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
3
|
Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:998540. [PMID: 36530435 PMCID: PMC9748083 DOI: 10.3389/fcimb.2022.998540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa easily adapts to newer environments and acquires several genome flexibilities to overcome the effect of antibiotics during therapeutics, especially in cystic fibrosis patients. During adaptation to the host system, the bacteria employ various tactics including virulence factor production and biofilm formation to escape from the host immune system and resist antibiotics. Hence, identifying alternative strategies to combat recalcitrant pathogens is imperative for the successful elimination of drug-resistant microbes. In this context, this study portrays the anti-virulence efficacy of umbelliferone (UMB) against P. aeruginosa. UMB (7-hydroxy coumarin) is pervasively found among the plant family of Umbelliferae and Asteraceae. The UMB impeded biofilm formation in the P. aeruginosa reference strain and clinical isolates on polystyrene and glass surfaces at the concentration of 125 µg/ml. Global proteomic analysis of UMB-treated cells revealed the downregulation of major virulence-associated proteins such as RhlR, LasA, AlgL, FliD, Tpx, HtpG, KatA, FusA1, Tsf, PhzM, PhzB2, CarB, DctP, MtnA, and MscL. A functional interaction study, gene ontology, and KEGG pathway analysis revealed that UMB could modulate the global regulators, enzymes, co-factors, and transcription factors related to quorum sensing (QS), stress tolerance, siderophore production, motility, and microcolony formation. In vitro biochemical assays further affirmed the anti-virulence efficacy of UMB by reducing pyocyanin, protease, elastase, and catalase production in various strains of P. aeruginosa. Besides the antibiofilm activity, UMB-treated cells exhibited enhanced antibiotic susceptibility to various antibiotics including amikacin, kanamycin, tobramycin, ciprofloxacin, and cefotaxime. Furthermore, in vitro cytotoxicity analysis revealed the biocompatibility of UMB, and the IC50 value was determined to be 249.85 µg/ml on the HepG2 cell line. Altogether, the study substantiates the anti-virulence efficacy of UMB against P. aeruginosa, and the proteomic analysis reveals the differential expression of the regulators related to QS, stress response, and motility factors.
Collapse
|
4
|
Mullally C, Stubbs KA, Thai VC, Anandan A, Bartley S, Scanlon MJ, Jarvis GA, John CM, Lim KYL, Sullivan CM, Sarkar-Tyson M, Vrielink A, Kahler CM. Novel small molecules that increase the susceptibility of Neisseria gonorrhoeae to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase. J Antimicrob Chemother 2022; 77:2441-2447. [PMID: 35770844 PMCID: PMC9410672 DOI: 10.1093/jac/dkac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response. Methods A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested. Results Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases. Conclusions Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.
Collapse
Affiliation(s)
- Christopher Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Van C Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Stephanie Bartley
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, USA.,Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, USA.,Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Katherine Y L Lim
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Courtney M Sullivan
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Charlene M Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| |
Collapse
|
5
|
Tiwari V, Panta PR, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A Klebsiella pneumoniae DedA family membrane protein is required for colistin resistance and for virulence in wax moth larvae. Sci Rep 2021; 11:24365. [PMID: 34934166 PMCID: PMC8692421 DOI: 10.1038/s41598-021-03834-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Ineffectiveness of carbapenems against multidrug resistant pathogens led to the increased use of colistin (polymyxin E) as a last resort antibiotic. A gene belonging to the DedA family encoding conserved membrane proteins was previously identified by screening a transposon library of K. pneumoniae ST258 for sensitivity to colistin. We have renamed this gene dkcA (dedA of Klebsiella required for colistin resistance). DedA family proteins are likely membrane transporters required for viability of Escherichia coli and Burkholderia spp. at alkaline pH and for resistance to colistin in a number of bacterial species. Colistin resistance is often conferred via modification of the lipid A component of bacterial lipopolysaccharide with aminoarabinose (Ara4N) and/or phosphoethanolamine. Mass spectrometry analysis of lipid A of the ∆dkcA mutant shows a near absence of Ara4N in the lipid A, suggesting a requirement for DkcA for lipid A modification with Ara4N. Mutation of K. pneumoniae dkcA resulted in a reduction of the colistin minimal inhibitory concentration to approximately what is found with a ΔarnT strain. We also identify a requirement of DkcA for colistin resistance that is independent of lipid A modification, instead requiring maintenance of optimal membrane potential. K. pneumoniae ΔdkcA displays reduced virulence in Galleria mellonella suggesting colistin sensitivity can cause loss of virulence.
Collapse
Affiliation(s)
- Vijay Tiwari
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| | - Pradip R. Panta
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| | - Caitlin E. Billiot
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| | - Martin V. Douglass
- grid.213876.90000 0004 1936 738XDepartment of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - Carmen M. Herrera
- grid.213876.90000 0004 1936 738XDepartment of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - M. Stephen Trent
- grid.213876.90000 0004 1936 738XDepartment of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - William T. Doerrler
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| |
Collapse
|
6
|
Scarbrough BA, Eade CR, Reid AJ, Williams TC, Troutman JM. Lipopolysaccharide Is a 4-Aminoarabinose Donor to Exogenous Polyisoprenyl Phosphates through the Reverse Reaction of the Enzyme ArnT. ACS OMEGA 2021; 6:25729-25741. [PMID: 34632229 PMCID: PMC8495848 DOI: 10.1021/acsomega.1c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/11/2023]
Abstract
Modification of the lipid A portion of LPS with cationic monosaccharides provides resistance to polymyxins, which are often employed as a last resort to treat multidrug-resistant bacterial infections. Here, we describe the use of fluorescent polyisoprenoids, liquid chromatography-mass spectrometry, and bacterial genetics to probe the activity of membrane-localized proteins that utilize the 55-carbon lipid carrier bactoprenyl phosphate (BP). We have discovered that a substantial background reaction occurs when B-strain E. coli cell membrane fractions are supplemented with exogenous BP. This reaction involves proteins associated with the arn operon, which is necessary for the covalent modification of lipid A with the cationic 4-aminoarabinose (Ara4N). Using a series of arn operon gene deletion mutants, we identified that the modification was dependent on ArnC, which is responsible for forming BP-linked Ara4N, or ArnT, which transfers Ara4N to lipid A. Surprisingly, we found that the majority of the Ara4N-modified isoprenoid was due to the reverse reaction catalyzed by ArnT and demonstrate this using heat-inactivated membrane fractions, isolated lipopolysaccharide fractions, and analyses of a purified ArnT. This work provides methods that will facilitate thorough and rapid investigation of bacterial outer membrane remodeling and the evaluation of polyisoprenoid precursors required for covalent glycan modifications.
Collapse
Affiliation(s)
- Beth A. Scarbrough
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Colleen R. Eade
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Amanda J. Reid
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Tiffany C. Williams
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Jerry M. Troutman
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
- . Phone: 704-687-5180
| |
Collapse
|
7
|
Milo S, Heylen RA, Glancy J, Williams GT, Patenall BL, Hathaway HJ, Thet NT, Allinson SL, Laabei M, Jenkins ATA. A small-molecular inhibitor against Proteus mirabilis urease to treat catheter-associated urinary tract infections. Sci Rep 2021; 11:3726. [PMID: 33580163 PMCID: PMC7881204 DOI: 10.1038/s41598-021-83257-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 01/30/2023] Open
Abstract
Infection and blockage of indwelling urinary catheters is significant owing to its high incidence rate and severe medical consequences. Bacterial enzymes are employed as targets for small molecular intervention in human bacterial infections. Urease is a metalloenzyme known to play a crucial role in the pathogenesis and virulence of catheter-associated Proteus mirabilis infection. Targeting urease as a therapeutic candidate facilitates the disarming of bacterial virulence without affecting bacterial fitness, thereby limiting the selective pressure placed on the invading population and lowering the rate at which it will acquire resistance. We describe the design, synthesis, and in vitro evaluation of the small molecular enzyme inhibitor 2-mercaptoacetamide (2-MA), which can prevent encrustation and blockage of urinary catheters in a physiologically representative in vitro model of the catheterized urinary tract. 2-MA is a structural analogue of urea, showing promising competitive activity against urease. In silico docking experiments demonstrated 2-MA's competitive inhibition, whilst further quantum level modelling suggests two possible binding mechanisms.
Collapse
Affiliation(s)
- Scarlet Milo
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Rachel A. Heylen
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - John Glancy
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - George T. Williams
- grid.9759.20000 0001 2232 2818School of Physical Sciences, University of Kent, Canterbury, CT2 7NH UK
| | - Bethany L. Patenall
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Hollie J. Hathaway
- grid.9835.70000 0000 8190 6402Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB UK
| | - Naing T. Thet
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Sarah L. Allinson
- grid.9835.70000 0000 8190 6402Biomedical and Life Sciences Division, Lancaster University, Bailrigg, Lancaster, LA1 4YB UK
| | - Maisem Laabei
- grid.7340.00000 0001 2162 1699Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - A. Toby A. Jenkins
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
8
|
Catalytic and antimicrobial properties of α-amylase immobilised on the surface of metal oxide nanoparticles. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01921-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractNew methods of obtaining products containing enzymes reduce the costs associated with obtaining them, increase the efficiency of processes and stabilize the created biocatalytic systems. In the study a catalytic system containing the enzyme α-amylase immobilized on ZnO nanoparticle and Fe3O4 nanoparticles was created. The efficiency of the processes was obtained with variables: concentrations of enzymes, temperatures and times, to define the best conditions for running the process, for which were determined equilibrium and kinetics of adsorption. The most effective parameters of α-amylase immobilization on metal oxides were determined, obtaining 100.8 mg/g sorption capacity for ZnO and 102.9 mg/g for Fe3O4 nanoparticles. Base on the best parameters, ZnO-α-amylase was investigated as an antimicrobial agent and Fe3O4-α-amylase was tested as a catalyst in the process of starch hydrolysis. As a result of the conducted experiments, it was found that α-amylase immobilized on Fe3O4 nanoparticles maintained high catalytic activity (the reaction rate constant KM = 0.7799 [g/dm3] and the maximum reaction rate Vmax = 8.660 [g/(dm3min)]).
Collapse
|
9
|
Michalska K, Chang C, Maltseva NI, Jedrzejczak R, Robertson GT, Gusovsky F, McCarren P, Schreiber SL, Nag PP, Joachimiak A. Allosteric inhibitors of Mycobacterium tuberculosis tryptophan synthase. Protein Sci 2020; 29:779-788. [PMID: 31930594 PMCID: PMC7020977 DOI: 10.1002/pro.3825] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Global dispersion of multidrug resistant bacteria is very common and evolution of antibiotic-resistance is occurring at an alarming rate, presenting a formidable challenge for humanity. The development of new therapeuthics with novel molecular targets is urgently needed. Current drugs primarily affect protein, nucleic acid, and cell wall synthesis. Metabolic pathways, including those involved in amino acid biosynthesis, have recently sparked interest in the drug discovery community as potential reservoirs of such novel targets. Tryptophan biosynthesis, utilized by bacteria but absent in humans, represents one of the currently studied processes with a therapeutic focus. It has been shown that tryptophan synthase (TrpAB) is required for survival of Mycobacterium tuberculosis in macrophages and for evading host defense, and therefore is a promising drug target. Here we present crystal structures of TrpAB with two allosteric inhibitors of M. tuberculosis tryptophan synthase that belong to sulfolane and indole-5-sulfonamide chemical scaffolds. We compare our results with previously reported structural and biochemical studies of another, azetidine-containing M. tuberculosis tryptophan synthase inhibitor. This work shows how structurally distinct ligands can occupy the same allosteric site and make specific interactions. It also highlights the potential benefit of targeting more variable allosteric sites of important metabolic enzymes.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
| | - Gregory T. Robertson
- Colorado State UniversityMycobacteria Research Laboratories, Department of Microbiology, Immunology and PathologyFort CollinsColorado
| | | | | | | | - Partha P. Nag
- Broad Institute of MIT and HarvardCambridgeMassachusetts
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and EngineeringUniversity of ChicagoChicagoIllinois
- Structural Biology Center, X‐ray Science DivisionArgonne National LaboratoryArgonneIllinois
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinois
| |
Collapse
|
10
|
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol 2019; 9:74. [PMID: 31001485 PMCID: PMC6454102 DOI: 10.3389/fcimb.2019.00074] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance constitutes one of the major challenges facing humanity in the Twenty-First century. The spread of resistant pathogens has been such that the possibility of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies must be employed to restrict resistance. Among the innovative proposed strategies, anti-virulence therapy has been envisioned as a promising alternative for effective control of the emergence and spread of resistant pathogens. This review presents some of the anti-virulence strategies that are currently being developed, it will cover strategies focused on quench pathogen quorum sensing (QS) systems, disassemble of bacterial functional membrane microdomains (FMMs), disruption of biofilm formation and bacterial toxin neutralization.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon Henrique Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Suzana Meira Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
11
|
Vrielink A, Holden HM. Editorial overview: Catalysis and regulation: Structural features guiding enzyme catalysed processes. Curr Opin Struct Biol 2018; 53:iii-v. [PMID: 30553296 DOI: 10.1016/j.sbi.2018.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alice Vrielink
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|