1
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Hoolehan W, Harris JC, Rodgers KK. Molecular Mechanisms of DNA Sequence Selectivity in V(D)J Recombination. ACS OMEGA 2023; 8:34206-34214. [PMID: 37779976 PMCID: PMC10536018 DOI: 10.1021/acsomega.3c05601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Antigen receptor (AgR) diversity is central to the ability of adaptive immunity in jawed vertebrates to protect against pathogenic agents. The production of highly diverse AgR repertoires is initiated during B and T cell lymphopoiesis by V(D)J recombination, which assembles the receptor genes from component gene segments in a cut-and-paste recombination reaction. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank AgR gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence, and the molecular mechanism for semiselective V(D)J recombination specificity is unknown. The modulation of chromatin structure during V(D)J recombination is essential in the formation of diverse AgRs in adaptive immunity while also reducing the likelihood for off-target recombination events that can result in chromosomal aberrations and genomic instability. Here we review what is presently known regarding mechanisms that facilitate assembly of RAG1/2 with RSSs, the ensuing conformational changes required for DNA cleavage activity, and how the readout of the RSS sequence affects reaction efficiency.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Justin C. Harris
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Karla K. Rodgers
- Department
of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
3
|
Min Q, Csomos K, Li Y, Dong L, Hu Z, Meng X, Yu M, Walter JE, Wang JY. B cell abnormalities and autoantibody production in patients with partial RAG deficiency. Front Immunol 2023; 14:1155380. [PMID: 37475856 PMCID: PMC10354446 DOI: 10.3389/fimmu.2023.1155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.
Collapse
Affiliation(s)
- Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
4
|
Castiello MC, Brandas C, Capo V, Villa A. HyperIgE in hypomorphic recombination-activating gene defects. Curr Opin Immunol 2023; 80:102279. [PMID: 36529093 DOI: 10.1016/j.coi.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
5
|
Hardt U, Corcoran MM, Narang S, Malmström V, Padyukov L, Karlsson Hedestam GB. Analysis of IGH allele content in a sample group of rheumatoid arthritis patients demonstrates unrevealed population heterogeneity. Front Immunol 2023; 14:1073414. [PMID: 36798124 PMCID: PMC9927645 DOI: 10.3389/fimmu.2023.1073414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Immunoglobulin heavy chain (IGH) germline gene variations influence the B cell receptor repertoire, with resulting biological consequences such as shaping our response to infections and altering disease susceptibilities. However, the lack of information on polymorphism frequencies in the IGH loci at the population level makes association studies challenging. Here, we genotyped a pilot group of 30 individuals with rheumatoid arthritis (RA) to examine IGH allele content and frequencies in this group. Eight novel IGHV alleles and one novel IGHJ allele were identified in the study. 15 cases were haplotypable using heterozygous IGHJ6 or IGHD anchors. One variant, IGHV4-34*01_S0742, was found in three out of 30 cases and included a single nucleotide change resulting in a non-canonical recombination signal sequence (RSS) heptamer. This variant allele, shown by haplotype analysis to be non-expressed, was also found in three out of 30 healthy controls and matched a single nucleotide polymorphism (SNP) described in the 1000 Genomes Project (1KGP) collection with frequencies that varied between population groups. Our finding of previously unreported alleles in a relatively small group of individuals with RA illustrates the need for baseline information about IG allelic frequencies in targeted study groups in preparation for future analysis of these genes in disease association studies.
Collapse
Affiliation(s)
- Uta Hardt
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden and Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin M. Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden and Karolinska University Hospital, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden and Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
6
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
7
|
Gan T, Wang Y, Liu Y, Schatz DG, Hu J. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Rep 2021; 37:109824. [PMID: 34644584 DOI: 10.1016/j.celrep.2021.109824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/09/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
RAG1 and RAG2 form a tetramer nuclease to initiate V(D)J recombination in developing T and B lymphocytes. The RAG1 protein evolves from a transposon ancestor and possesses nuclease activity that requires interaction with RAG2. Here, we show that the human RAG1 aggregates in the nucleus in the absence of RAG2, exhibiting an extremely low V(D)J recombination activity. In contrast, RAG2 does not aggregate by itself, but it interacts with RAG1 to disrupt RAG1 aggregates and thereby activate robust V(D)J recombination. Moreover, RAG2 from mouse and zebrafish could not disrupt the aggregation of human RAG1 as efficiently as human RAG2 did, indicating a species-specific regulatory mechanism for RAG1 by RAG2. Therefore, we propose that RAG2 coevolves with RAG1 to release inert RAG1 from aggregates and thereby activate V(D)J recombination to generate diverse antigen receptors in lymphocytes.
Collapse
Affiliation(s)
- Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuhong Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Peters JM. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr Opin Cell Biol 2021; 70:75-83. [PMID: 33422934 DOI: 10.1016/j.ceb.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
'Structural maintenance of chromosomes' (SMC) complexes are required for the folding of genomic DNA into loops. Theoretical considerations and single-molecule experiments performed with the SMC complexes cohesin and condensin indicate that DNA folding occurs via loop extrusion. Recent work indicates that this process is essential for the assembly of antigen receptor genes by V(D)J recombination in developing B and T cells of the vertebrate immune system. Here, I review how recent studies of the mouse immunoglobulin heavy chain locus Igh have provided evidence for this hypothesis and how the formation of chromatin loops by cohesin and regulation of this process by CTCF and Wapl might ensure that all variable gene segments in this locus (VH segments) participate in recombination with a re-arranged DJH segment, to ensure generation of a maximally diverse repertoire of B-cell receptors and antibodies.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
9
|
Single-Cell Sequencing Confirms Transcripts and V HDJ H Rearrangements of Immunoglobulin Genes in Human Podocytes. Genes (Basel) 2021; 12:genes12040472. [PMID: 33806147 PMCID: PMC8064494 DOI: 10.3390/genes12040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Most glomerular diseases are associated with inflammation caused by deposited pathogenic immunoglobulins (Igs), which are believed to be produced by B cells. However, our previous study indicated that the human podocyte cell line can produce IgG. In this study, we aimed to confirm the transcripts and characterize the repertoires of Igs in primary podocytes at single cell level. First, single-cell RNA sequencing of cell suspensions from “normal” kidney cortexes by a 10xGenomics Chromium system detected Ig transcripts in 7/360 podocytes and Ig gene segments in 106/360 podocytes. Then, we combined nested PCR with Sanger sequencing to detect the transcripts and characterize the repertoires of Igs in 48 single podocytes and found that five classes of Ig heavy chains were amplified in podocytes. Four-hundred and twenty-nine VHDJH rearrangement sequences were analyzed; podocyte-derived Igs exhibited classic VHDJH rearrangements with nucleotide additions and somatic hypermutations, biased VH1 usage and restricted diversity. Moreover, compared with the podocytes from healthy control that usually expressed one class of Ig and one VHDJH pattern, podocytes from patients expressed more classes of Ig, VHDJH patterns and somatic hypermutations. These findings suggested that podocytes can express Igs in normal condition and increase diversity in pathological situations.
Collapse
|
10
|
Zhong ED, Bepler T, Berger B, Davis JH. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat Methods 2021; 18:176-185. [PMID: 33542510 PMCID: PMC8183613 DOI: 10.1038/s41592-020-01049-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset's distribution of per-particle variability, generate density maps for exploratory analysis, extract particle subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software freely available at http://cryodrgn.csail.mit.edu .
Collapse
Affiliation(s)
- Ellen D Zhong
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tristan Bepler
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph H Davis
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
12
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
13
|
Cutting antiparallel DNA strands in a single active site. Nat Struct Mol Biol 2020; 27:119-126. [PMID: 32015552 PMCID: PMC7015813 DOI: 10.1038/s41594-019-0363-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/13/2019] [Indexed: 01/17/2023]
Abstract
A single enzyme active site that catalyzes multiple reactions is a well-established biochemical theme, but how one nuclease site cleaves both DNA strands of a double helix has not been well understood. In analyzing site-specific DNA cleavage by the mammalian RAG1-RAG2 recombinase, which initiates V(D)J recombination, we find that the active site is reconfigured for the two consecutive reactions and the DNA double helix adopts drastically different structures. For initial nicking of the DNA, a locally unwound and unpaired DNA duplex forms a zipper via alternating interstrand base stacking, rather than melting as generally thought. The second strand cleavage and formation of a hairpin-DNA product requires a global scissor-like movement of protein and DNA, delivering the scissile phosphate into the rearranged active site.
Collapse
|
14
|
Zhang ZY, Yang YH, Ding H, Wang D, Chen W, Lin H. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief Bioinform 2020; 22:526-535. [PMID: 31994694 DOI: 10.1093/bib/bbz177] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Messenger RNAs (mRNAs) shoulder special responsibilities that transmit genetic code from DNA to discrete locations in the cytoplasm. The locating process of mRNA might provide spatial and temporal regulation of mRNA and protein functions. The situ hybridization and quantitative transcriptomics analysis could provide detail information about mRNA subcellular localization; however, they are time consuming and expensive. It is highly desired to develop computational tools for timely and effectively predicting mRNA subcellular location. In this work, by using binomial distribution and one-way analysis of variance, the optimal nonamer composition was obtained to represent mRNA sequences. Subsequently, a predictor based on support vector machine was developed to identify the mRNA subcellular localization. In 5-fold cross-validation, results showed that the accuracy is 90.12% for Homo sapiens (H. sapiens). The predictor may provide a reference for the study of mRNA localization mechanisms and mRNA translocation strategies. An online web server was established based on our models, which is available at http://lin-group.cn/server/iLoc-mRNA/.
Collapse
Affiliation(s)
- Zhao-Yue Zhang
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Yu-He Yang
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Hui Ding
- Center for Informational Biology at University of Electronic Science and Technology of China
| | - Dong Wang
- Department of Bioinformatics at Southern Medical University
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy at Chengdu University of Traditional Chinese Medicine
| | - Hao Lin
- Center for Informational Biology at University of Electronic Science and Technology of China
| |
Collapse
|