1
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Xie P, Li Y, Lamon G, Kuang H, Wang DN, Traaseth NJ. A fiducial-assisted strategy compatible with resolving small MFS transporter structures in multiple conformations using cryo-EM. Nat Commun 2025; 16:7. [PMID: 39746942 PMCID: PMC11695964 DOI: 10.1038/s41467-024-54986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty. Here, we describe a strategy for introducing a rigid fiducial marker (BRIL domain) at the C-terminus of membrane transporters from the Major Facilitator Superfamily (MFS) with AlphaFold2. This approach involves fusion of the last transmembrane domain helix of the target protein with the first helix of BRIL through a short poly-alanine linker to promote helicity. Combining this strategy with a BRIL-specific Fab, we elucidated four cryo-EM structures of the 42 kDa Staphylococcus aureus transporter NorA, three of which were derived from a single sample corresponding to inward-open, inward-occluded, and occluded conformations. Hence, this fusion construct facilitated experiments to characterize the conformational landscape of NorA and validated our design to position the BRIL/antibody pair in an orientation that avoids steric clash with the transporter. The latter was enabled through AlphaFold2 predictions, which minimized guesswork and reduced the need for screening several constructs. We further validated the suitability of the method to three additional MFS transporters (GlpT, Bmr, and Blt), results that supported a rigid linker between the transporter and BRIL. The successful application to four MFS proteins, the largest family of secondary transporters in nature, and analysis of predicted structures for the family indicates this strategy will be a valuable tool for studying other MFS members using cryo-EM.
Collapse
Affiliation(s)
- Pujun Xie
- Department of Chemistry, New York University, New York, NY, USA
| | - Yan Li
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gaëlle Lamon
- Department of Chemistry, New York University, New York, NY, USA
| | - Huihui Kuang
- Cryo-EM Core Laboratory, New York University School of Medicine, New York, NY, USA
| | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
3
|
Suder DS, Gonen S. Mitigating the Blurring Effect of CryoEM Averaging on a Flexible and Highly Symmetric Protein Complex through Sub-Particle Reconstruction. Int J Mol Sci 2024; 25:5665. [PMID: 38891853 PMCID: PMC11171969 DOI: 10.3390/ijms25115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Many macromolecules are inherently flexible as a feature of their structure and function. During single-particle CryoEM processing, flexible protein regions can be detrimental to high-resolution reconstruction as signals from thousands of particles are averaged together. This "blurring" effect can be difficult to overcome and is possibly more pronounced when averaging highly symmetric complexes. Approaches to mitigating flexibility during CryoEM processing are becoming increasingly critical as the technique advances and is applied to more dynamic proteins and complexes. Here, we detail the use of sub-particle averaging and signal subtraction techniques to precisely target and resolve flexible DARPin protein attachments on a designed tetrahedrally symmetric protein scaffold called DARP14. Particles are first aligned as full complexes, and then the symmetry is reduced by alignment and focused refinement of the constituent subunits. The final reconstructions we obtained were vastly improved over the fully symmetric reconstructions, with observable secondary structure and side-chain placement. Additionally, we were also able to reconstruct the core region of the scaffold to 2.7 Å. The data processing protocol outlined here is applicable to other dynamic and symmetric protein complexes, and our improved maps could allow for new structure-guided variant designs of DARP14.
Collapse
Affiliation(s)
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Kung JE, Johnson MC, Jao CC, Arthur CP, Tegunov D, Rohou A, Sudhamsu J. Disulfi de constrained Fabs overcome target size limitation for high-resolution single-particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593593. [PMID: 38798381 PMCID: PMC11118328 DOI: 10.1101/2024.05.10.593593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High-resolution structures of proteins are critical to understanding molecular mechanisms of biological processes and in the discovery of therapeutic molecules. Cryo-EM has revolutionized structure determination of large proteins and their complexes1, but a vast majority of proteins that underlie human diseases are small (< 50 kDa) and usually beyond its reach due to low signal-to-noise images and difficulties in particle alignment2. Current strategies to overcome this problem increase the overall size of small protein targets using scaffold proteins that bind to the target, but are limited by inherent flexibility and not being bound to their targets in a rigid manner, resulting in the target being poorly resolved compared to the scaffolds3-11. Here we present an iteratively engineered molecular design for transforming Fabs (antibody fragments), into conformationally rigid scaffolds (Rigid-Fabs) that, when bound to small proteins (~20 kDa), can enable high-resolution structure determination using cryo-EM. This design introduces multiple disulfide bonds at strategic locations, generates a well-folded Fab constrained into a rigid conformation and can be applied to Fabs from various species, isotypes and chimeric Fabs. We present examples of the Rigid Fab design enabling high-resolution (2.3-2.5 Å) structures of small proteins, Ang2 (26 kDa) and KRAS (21 kDa) by cryo-EM. The strategies for designing disulfide constrained Rigid Fabs in our work thus establish a general approach to overcome the target size limitation of single particle cryo-EM.
Collapse
Affiliation(s)
- Jennifer E. Kung
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Matthew C. Johnson
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine C. Jao
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christopher P. Arthur
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Dimitry Tegunov
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Agdanowski MP, Castells-Graells R, Sawaya MR, Cascio D, Yeates TO, Arbing MA. X-ray crystal structure of a designed rigidified imaging scaffold in the ligand-free conformation. Acta Crystallogr F Struct Biol Commun 2024; 80:107-115. [PMID: 38767964 PMCID: PMC11134730 DOI: 10.1107/s2053230x2400414x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Imaging scaffolds composed of designed protein cages fused to designed ankyrin repeat proteins (DARPins) have enabled the structure determination of small proteins by cryogenic electron microscopy (cryo-EM). One particularly well characterized scaffold type is a symmetric tetrahedral assembly composed of 24 subunits, 12 A and 12 B, which has three cargo-binding DARPins positioned on each vertex. Here, the X-ray crystal structure of a representative tetrahedral scaffold in the apo state is reported at 3.8 Å resolution. The X-ray crystal structure complements recent cryo-EM findings on a closely related scaffold, while also suggesting potential utility for crystallographic investigations. As observed in this crystal structure, one of the three DARPins, which serve as modular adaptors for binding diverse `cargo' proteins, present on each of the vertices is oriented towards a large solvent channel. The crystal lattice is unusually porous, suggesting that it may be possible to soak crystals of the scaffold with small (≤30 kDa) protein cargo ligands and subsequently determine cage-cargo structures via X-ray crystallography. The results suggest the possibility that cryo-EM scaffolds may be repurposed for structure determination by X-ray crystallography, thus extending the utility of electron-microscopy scaffold designs for alternative structural biology applications.
Collapse
Affiliation(s)
- Matthew P. Agdanowski
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roger Castells-Graells
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A. Arbing
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
7
|
Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, Gleave E, Debreczeni JÉ, Breed J, Leopold K, Patel A, Jahagirdar D, Lyons B, Subramaniam S, Phillips C, Yeates TO. Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold. Proc Natl Acad Sci U S A 2023; 120:e2305494120. [PMID: 37669364 PMCID: PMC10500258 DOI: 10.1073/pnas.2305494120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.
Collapse
Affiliation(s)
- Roger Castells-Graells
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Mark A. Arbing
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael R. Sawaya
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Emma Gleave
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | | | - Jason Breed
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | - Karoline Leopold
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | - Ankoor Patel
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | | | - Bronwyn Lyons
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | - Sriram Subramaniam
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chris Phillips
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | - Todd O. Yeates
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| |
Collapse
|
8
|
Azinas S, Carroni M. Cryo-EM uniqueness in structure determination of macromolecular complexes: A selected structural anthology. Curr Opin Struct Biol 2023; 81:102621. [PMID: 37315343 DOI: 10.1016/j.sbi.2023.102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has become in the past 10 years one of the major tools for the structure determination of proteins. Nowadays, the structure prediction field is experiencing the same revolution and, using AlphaFold2, it is possible to have high-confidence atomic models for virtually any polypeptide chain, smaller than 4000 amino acids, in a simple click. Even in a scenario where all polypeptide chain folding were to be known, cryo-EM retains specific characteristics that make it a unique tool for the structure determination of macromolecular complexes. Using cryo-EM, it is possible to obtain near-atomic structures of large and flexible mega-complexes, describe conformational panoramas, and potentially develop a structural proteomic approach from fully ex vivo specimens.
Collapse
Affiliation(s)
- Stavros Azinas
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23A, Solna, 17165, Sweden. https://twitter.com/@stav____
| | - Marta Carroni
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23A, Solna, 17165, Sweden.
| |
Collapse
|
9
|
Moreaud L, Viollet S, Urvoas A, Valerio-Lepiniec M, Mesneau A, Li de la Sierra-Gallay I, Miller J, Ouldali M, Marcelot C, Balor S, Soldan V, Meriadec C, Artzner F, Dujardin E, Minard P. Design, synthesis, and characterization of protein origami based on self-assembly of a brick and staple artificial protein pair. Proc Natl Acad Sci U S A 2023; 120:e2218428120. [PMID: 36893280 PMCID: PMC10089216 DOI: 10.1073/pnas.2218428120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
A versatile strategy to create an inducible protein assembly with predefined geometry is demonstrated. The assembly is triggered by a binding protein that staples two identical protein bricks together in a predictable spatial conformation. The brick and staple proteins are designed for mutual directional affinity and engineered by directed evolution from a synthetic modular repeat protein library. As a proof of concept, this article reports on the spontaneous, extremely fast and quantitative self-assembly of two designed alpha-repeat (αRep) brick and staple proteins into macroscopic tubular superhelices at room temperature. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM with staining agent and cryoTEM) elucidate the resulting superhelical arrangement that precisely matches the a priori intended 3D assembly. The highly ordered, macroscopic biomolecular construction sustains temperatures as high as 75 °C thanks to the robust αRep building blocks. Since the α-helices of the brick and staple proteins are highly programmable, their design allows encoding the geometry and chemical surfaces of the final supramolecular protein architecture. This work opens routes toward the design and fabrication of multiscale protein origami with arbitrarily programmed shapes and chemical functions.
Collapse
Affiliation(s)
- Laureen Moreaud
- Centre d’Elaboration des Matériaux et d’Etudes Structurales, CNRS UPR8011F-31055, Toulouse, France
| | - Sébastien Viollet
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Agathe Urvoas
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Marie Valerio-Lepiniec
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Agnès Mesneau
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Jessalyn Miller
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
- Department of Chemistry, Emory University, Atlanta, GA30322
| | - Malika Ouldali
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| | - Cécile Marcelot
- Centre d’Elaboration des Matériaux et d’Etudes Structurales, CNRS UPR8011F-31055, Toulouse, France
| | - Stéphanie Balor
- Microscopie Electronique Intégrative Toulouse, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Vanessa Soldan
- Microscopie Electronique Intégrative Toulouse, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Cristelle Meriadec
- Institut de Physique de Rennes, CNRS, UMR6251, Université de Rennes 1F-35042, Rennes, France
| | - Franck Artzner
- Institut de Physique de Rennes, CNRS, UMR6251, Université de Rennes 1F-35042, Rennes, France
| | - Erik Dujardin
- Centre d’Elaboration des Matériaux et d’Etudes Structurales, CNRS UPR8011F-31055, Toulouse, France
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, UMR6303, Université de Bourgogne Franche-Comté21000, Dijon, France
| | - Philippe Minard
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay91198, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
12
|
Abstract
In recent years, protein structure analysis using cryo-electron microscopy(cryo-EM) has expanded and improved. In this review, we discuss many recent improvements to the field, the problems those improvements hope to solve, and some of the still unanswered questions. Most notably, this review will discuss improvements in resolving small or fragmented protein structures, as well as methods to improve the signal-to-noise ratio of the data by increasing image contrast using carbon-based systems. We will also describe how, in the last 5 years, methodological improvements have allowed for better 3D image resolution by capturing a continuum of 3D images. We will provide examples of these methods in practice and discuss how these improved methods may be used in small-molecule drug discovery and development. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Angela Cabral
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Julia Elise Cabral
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| | - Reginald McNulty
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92694-3900, USA
| |
Collapse
|
13
|
Bromberg R, Cai K, Guo Y, Plymire D, Emde T, Puzio M, Borek D, Otwinowski Z. The His-tag as a decoy modulating preferred orientation in cryoEM. Front Mol Biosci 2022; 9:912072. [PMID: 36325274 PMCID: PMC9619061 DOI: 10.3389/fmolb.2022.912072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
The His-tag is a widely used affinity tag that facilitates purification by means of affinity chromatography of recombinant proteins for functional and structural studies. We show here that His-tag presence affects how coproheme decarboxylase interacts with the air-water interface during grid preparation for cryoEM. Depending on His-tag presence or absence, we observe significant changes in patterns of preferred orientation. Our analysis of particle orientations suggests that His-tag presence can mask the hydrophobic and hydrophilic patches on a protein’s surface that mediate the interactions with the air-water interface, while the hydrophobic linker between a His-tag and the coding sequence of the protein may enhance other interactions with the air-water interface. Our observations suggest that tagging, including rational design of the linkers between an affinity tag and a protein of interest, offer a promising approach to modulating interactions with the air-water interface.
Collapse
Affiliation(s)
- Raquel Bromberg
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Ligo Analytics, Dallas, TX, United States
| | - Kai Cai
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yirui Guo
- Ligo Analytics, Dallas, TX, United States
| | - Daniel Plymire
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Ligo Analytics, Dallas, TX, United States
| | - Tabitha Emde
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Maciej Puzio
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dominika Borek
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Center for Structural Genomics of Infectious Diseases, Dallas, TX, United States
- *Correspondence: Dominika Borek, ; Zbyszek Otwinowski,
| | - Zbyszek Otwinowski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Center for Structural Genomics of Infectious Diseases, Dallas, TX, United States
- *Correspondence: Dominika Borek, ; Zbyszek Otwinowski,
| |
Collapse
|
14
|
Wentinck K, Gogou C, Meijer DH. Putting on molecular weight: Enabling cryo-EM structure determination of sub-100-kDa proteins. Curr Res Struct Biol 2022; 4:332-337. [PMID: 36248264 PMCID: PMC9562432 DOI: 10.1016/j.crstbi.2022.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Significant advances in the past decade have enabled high-resolution structure determination of a vast variety of proteins by cryogenic electron microscopy single particle analysis. Despite improved sample preparation, next-generation imaging hardware, and advanced single particle analysis algorithms, small proteins remain elusive for reconstruction due to low signal-to-noise and lack of distinctive structural features. Multiple efforts have therefore been directed at the development of size-increase techniques for small proteins. Here we review the latest methods for increasing effective molecular weight of proteins <100 kDa through target protein binding or target protein fusion - specifically by using nanobody-based assemblies, fusion tags, and symmetric scaffolds. Finally, we summarize these state-of-the-art techniques into a decision-tree to facilitate the design of tailored future approaches, and thus for further exploration of ever-smaller proteins that make up the largest part of the human genome.
Collapse
Key Words
- BRIL, cytochromeb562 RIL
- DARPin, Design Ankyrin Repeat Protein
- Fab, antigen binding fragment
- GFP, Green Fluorecent Protein
- GPCR, G protein-coupled receptor
- MW, molecular weight
- Mb, megabody
- Nb, nanobody
- SNR, signal-to-noise ratio
- SPA, single particle analysis
- TM, transmembrane
- cryo-EM, cryogenic electron microscopy
- kDa, kiloDalton
- κOR ICL3, κ-opiod receptor intracellular loop 3
Collapse
Affiliation(s)
| | | | - Dimphna H. Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, the Netherlands
| |
Collapse
|
15
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
18
|
Collu G, Bierig T, Krebs AS, Engilberge S, Varma N, Guixà-González R, Sharpe T, Deupi X, Olieric V, Poghosyan E, Benoit RM. Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure 2021; 30:95-106.e7. [PMID: 34587504 DOI: 10.1016/j.str.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Chimeric fusion proteins are essential tools for protein nanotechnology. Non-optimized protein-protein connections are usually flexible and therefore unsuitable as structural building blocks. Here we show that the ER/K motif, a single α-helical domain (SAH), can be seamlessly fused to terminal helices of proteins, forming an extended, partially free-standing rigid helix. This enables the connection of two domains at a defined distance and orientation. We designed three constructs termed YFPnano, T4Lnano, and MoStoNano. Analysis of experimentally determined structures and molecular dynamics simulations reveals a certain degree of plasticity in the connections that allows the adaptation to crystal contact opportunities. Our data show that SAHs can be stably integrated into designed structural elements, enabling new possibilities for protein nanotechnology, for example, to improve the exposure of epitopes on nanoparticles (structural vaccinology), to engineer crystal contacts with minimal impact on construct flexibility (for the study of protein dynamics), and to design novel biomaterials.
Collapse
Affiliation(s)
- Gabriella Collu
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Bierig
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna-Sophia Krebs
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sylvain Engilberge
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Niveditha Varma
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Timothy Sharpe
- Biophysics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Emiliya Poghosyan
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Roger M Benoit
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
19
|
McIlwain BC, Erwin AL, Davis AR, Ben Koff B, Chang L, Bylund T, Chuang GY, Kwong PD, Ohi MD, Lai YT, Stockbridge RB. N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. J Mol Biol 2021; 433:166909. [PMID: 33676924 PMCID: PMC8292168 DOI: 10.1016/j.jmb.2021.166909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Amanda L Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States
| | - Alexander R Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - B Ben Koff
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States.
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, United States.
| | - Randy B Stockbridge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
21
|
Chiu YH, Ko KT, Yang TJ, Wu KP, Ho MR, Draczkowski P, Hsu STD. Direct Visualization of a 26 kDa Protein by Cryo-Electron Microscopy Aided by a Small Scaffold Protein. Biochemistry 2021; 60:1075-1079. [PMID: 33719392 DOI: 10.1021/acs.biochem.0c00961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryo-electron microscopy (cryo-EM)-based structure determination of small proteins is hindered by the technical challenges associated with low signal-to-noise ratios of their particle images in intrinsically noisy micrographs. One solution is to attach the target protein to a large protein scaffold to increase its apparent size and, therefore, image contrast. Here we report a novel scaffold design based on a trimeric helical protein, E. coli ornithine transcarbamylase (OTC), fused to human ubiquitin. As a proof of principle, we demonstrated the ability to resolve a cryo-EM map of a 26 kDa human ubiquitin C-terminal hydrolase (UCHL1) attached to the C-terminus of ubiquitin as part of the trimeric assembly. The results revealed conformational changes in UCHL1 upon binding to ubiquitin, namely, a significant displacement of α-helix 2, which was also observed by X-ray crystallography. Our findings demonstrated the potential of the trimeric OTC scaffold design for studying a large number of ubiquitin interacting proteins by cryo-EM.
Collapse
Affiliation(s)
- Yi-Hsiang Chiu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuang-Ting Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Piotr Draczkowski
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Faculty of Pharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U, Zarkadas E, Weckener M, Sente A, Ward P, Wohlkönig A, Zögg T, Remaut H, Naismith JH, Nury H, Vranken W, Aricescu AR, Pardon E, Steyaert J. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 2021; 18:60-68. [PMID: 33408403 PMCID: PMC7611088 DOI: 10.1038/s41592-020-01001-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2020] [Indexed: 01/28/2023]
Abstract
Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.
Collapse
Affiliation(s)
- Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Baptiste Fischer
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Valentina Kalichuk
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Uriel López-Sánchez
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Eleftherios Zarkadas
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Miriam Weckener
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Philip Ward
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandre Wohlkönig
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Zögg
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - James H Naismith
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
23
|
Nygaard R, Kim J, Mancia F. Cryo-electron microscopy analysis of small membrane proteins. Curr Opin Struct Biol 2020; 64:26-33. [PMID: 32603877 PMCID: PMC7665978 DOI: 10.1016/j.sbi.2020.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Recent advances in single-particle cryogenic-electron microscopy have facilitated an exponential growth in the number of membrane protein structures determined to close to atomic resolution. Nevertheless, despite improvements in microscope hardware, cryo-EM software and sample preparation techniques, challenges remain for structural analysis of small-sized membrane proteins (i.e.<150 kilodalton). Here we discuss recent examples of structures of macromolecules from this category determined by cryo-EM. We analyze the underlying difficulties, the enabling technologies such as the use of antibody fragments to gain size and provide fiducials for particle alignment, and the unresolved issues like dislocation of complexes at the air-water interface. Finally, we briefly highlight the biological relevance of some of these success stories, and our predictions for the future.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
24
|
Steyaert J, Yeates TO. Editorial overview: Engineered proteins as tools in structural biology. Curr Opin Struct Biol 2020; 60:v-vi. [DOI: 10.1016/j.sbi.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|