1
|
Kim DG, Lee CM, Lee YS, Yoon SH, Kim SY. Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. Int J Mol Sci 2024; 26:216. [PMID: 39796082 PMCID: PMC11720594 DOI: 10.3390/ijms26010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The black soldier fly, Hermetia illucens, is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from H. illucens. Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity. Sequence analysis of the fosmid revealed a novel mannan-degrading gene, ManEM6, composed of 1185 base pairs encoding 394 amino acids, with a deduced 20-amino-acid N-terminal signal peptide sequence. The conceptual translation of ManEM6 exhibited the highest identity (78%) to endo-1,4-β-mannosidase from Dysgonomonas mossii. Phylogenetic and domain analyses indicated that ManEM6 encodes a novel mannanase with a glycoside hydrolase family 26 domain. The recombinant protein rManEM6 showed its highest activity at 40 °C and pH 7.0, and it remained stable in the range of pH 5-10.0. rManEM6 hydrolyzed substrates with β-1,4-glycosidic mannoses, showing maximum enzymatic activity toward locust bean gum galactomannan, while it did not hydrolyze p-nitrophenyl-β-pyranosides, demonstrating endo-form mannosidase activity. rManEM6 was highly stable under stringent conditions, including those of polar organic solvents, as well as reducing and denaturing reagents. Therefore, ManEM6 may be an attractive candidate for the degradation of mannan under high-organic-solvent and protein-denaturing processes in the food and feed industries.
Collapse
Affiliation(s)
- Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Chang-Muk Lee
- Technology Services Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Seok Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Sang-Hong Yoon
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Su-Yeon Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| |
Collapse
|
2
|
Luu MT, Berengut JF, Li J, Chen JB, Daljit Singh JK, Coffi Dit Glieze K, Turner M, Skipper K, Meppat S, Fowler H, Close W, Doye JPK, Abbas A, Wickham SFJ. Reconfigurable nanomaterials folded from multicomponent chains of DNA origami voxels. Sci Robot 2024; 9:eadp2309. [PMID: 39602517 DOI: 10.1126/scirobotics.adp2309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In cells, proteins rapidly self-assemble into sophisticated nanomachines. Bioinspired self-assembly approaches, such as DNA origami, have been used to achieve complex three-dimensional (3D) nanostructures and devices. However, current synthetic systems are limited by low yields in hierarchical assembly and challenges in rapid and efficient reconfiguration between diverse structures. Here, we developed a modular system of DNA origami "voxels" with programmable 3D connections. We demonstrate multifunctional pools of up to 12 unique voxels that can assemble into many shapes, prototyping 50 structures. Programmable switching of local connections between flexible and rigid states achieved rapid and reversible reconfiguration of global structures in three dimensions. Multistep assembly pathways were then explored to increase the yield. Voxels were assembled via flexible chain intermediates into rigid structures, increasing yield up to 100-fold. We envision that foldable chains of DNA origami voxels can achieve increased complexity in reconfigurable nanomaterials, providing modular components for the assembly of nanorobotic systems with future applications in synthetic biology, assembly of inorganic materials, and nanomedicine.
Collapse
Affiliation(s)
- Minh Tri Luu
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan F Berengut
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
- EMBL Australia Node for Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| | - Jiahe Li
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Jing-Bing Chen
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Kanako Coffi Dit Glieze
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Matthew Turner
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Karuna Skipper
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Sreelakshmi Meppat
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Hannah Fowler
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - William Close
- Australian Centre for Microscopy & Microanalysis, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ali Abbas
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Shelley F J Wickham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Chazot A, Zimberger C, Feracci M, Moussa A, Good S, Sommadossi JP, Alvarez K, Ferron F, Canard B. The activation cascade of the broad-spectrum antiviral bemnifosbuvir characterized at atomic resolution. PLoS Biol 2024; 22:e3002743. [PMID: 39190717 DOI: 10.1371/journal.pbio.3002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
Collapse
Affiliation(s)
- Aurélie Chazot
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Claire Zimberger
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Mikael Feracci
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Steven Good
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| |
Collapse
|
4
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble and functional membrane protein analogues. Nature 2024; 631:449-458. [PMID: 38898281 PMCID: PMC11236705 DOI: 10.1038/s41586-024-07601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
Affiliation(s)
- Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Goldbach
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra E M Balbi
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Srajan Kapoor
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Jagrity Choudhury
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christian Schellhaas
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Simon Kozlov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
5
|
Chen Q, Wu J, Wu Y, Wang Z, Zeng M, He Z, Chen J, Mu W. Rational Design of Loop Dynamics for a Barrel-Shaped Enzyme by Introducing Disulfide Bonds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13856-13868. [PMID: 38848490 DOI: 10.1021/acs.jafc.4c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Loop dynamics redesign is an important strategy to manipulate protein function. Cellobiose 2-epimerase (CE) and other members of its superfamily are widely used for diverse industrial applications. The structural feature of the loops connecting barrel helices contributes greatly to the differences in their functional characteristics. Inspired by the in-silico mutation with molecular dynamics (MD) simulation analysis, we propose a strategy for identifying disulfide bond mutation candidates based on the prediction of protein flexibility and residue-residue interaction. The most beneficial mutant with the newly introduced disulfide bond would simultaneously improve both its thermostability and its reaction propensity to the targeting isomerization product. The ratio of the isomerization/epimerization catalytic rate was improved from 4:103 to 9:22. MD simulation and binding free energy calculations were applied to provide insights into molecular recognition upon mutations. The comparative analysis of enzyme/substrate binding modes indicates that the altered catalytic reaction pathway is due to less efficient binding of the native product. The key residue responsible for the observed phenotype was identified by energy decomposition and was further confirmed by the mutation experiment. The rational design of the key loop region might be a promising strategy to alter the catalytic behavior of all (α/α)6-barrel-like proteins.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Junhao Wu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Yanchang Wu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi Jiangsu 214122, P. R. China
| |
Collapse
|
6
|
Gehl M, Demmer U, Ermler U, Shima S. Mutational and structural studies of (βα) 8-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism. Protein Sci 2024; 33:e5018. [PMID: 38747406 PMCID: PMC11094777 DOI: 10.1002/pro.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Methylene-tetrahydropterin reductases catalyze the reduction of a methylene to a methyl group bound to a reduced pterin as C1 carrier in various one-carbon (C1) metabolisms. F420-dependent methylene-tetrahydromethanopterin (methylene-H4MPT) reductase (Mer) and the flavin-independent methylene-tetrahydrofolate (methylene-H4F) reductase (Mfr) use a ternary complex mechanism for the direct transfer of a hydride from F420H2 and NAD(P)H to the respective methylene group, whereas FAD-dependent methylene-H4F reductase (MTHFR) uses FAD as prosthetic group and a ping-pong mechanism to catalyze the reduction of methylene-H4F. A ternary complex structure and a thereof derived catalytic mechanism of MTHFR is available, while no ternary complex structures of Mfr or Mer are reported. Here, Mer from Methanocaldococcus jannaschii (jMer) was heterologously produced and the crystal structures of the enzyme with and without F420 were determined. A ternary complex of jMer was modeled on the basis of the jMer-F420 structure and the ternary complex structure of MTHFR by superimposing the polypeptide after fixing hydride-transferring atoms of the flavins on each other, and by the subsequent transfer of the methyl-tetrahydropterin from MTHFR to jMer. Mutational analysis of four functional amino acids, which are similarly positioned in the three reductase structures, indicated despite the insignificant sequence identity, a common catalytic mechanism with a 5-iminium cation of methylene-tetrahydropterin as intermediate protonated by a shared glutamate. According to structural, mutational and phylogenetic analysis, the evolution of the three reductases most likely proceeds via a convergent development although a divergent scenario requiring drastic structural changes of the common ancestor cannot be completely ruled out.
Collapse
Affiliation(s)
- Manuel Gehl
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Ulrike Demmer
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Ulrich Ermler
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Seigo Shima
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
7
|
Beck J, Shanmugaratnam S, Höcker B. Diversifying de novo TIM barrels by hallucination. Protein Sci 2024; 33:e5001. [PMID: 38723111 PMCID: PMC11081422 DOI: 10.1002/pro.5001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
De novo protein design expands the protein universe by creating new sequences to accomplish tailor-made enzymes in the future. A promising topology to implement diverse enzyme functions is the ubiquitous TIM-barrel fold. Since the initial de novo design of an idealized four-fold symmetric TIM barrel, the family of de novo TIM barrels is expanding rapidly. Despite this and in contrast to natural TIM barrels, these novel proteins lack cavities and structural elements essential for the incorporation of binding sites or enzymatic functions. In this work, we diversified a de novo TIM barrel by extending multiple βα-loops using constrained hallucination. Experimentally tested designs were found to be soluble upon expression in Escherichia coli and well-behaved. Biochemical characterization and crystal structures revealed successful extensions with defined α-helical structures. These diversified de novo TIM barrels provide a framework to explore a broad spectrum of functions based on the potential of natural TIM barrels.
Collapse
Affiliation(s)
- Julian Beck
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
8
|
Ye Q, Wang D, Wei N. Engineering biomaterials for the recovery of rare earth elements. Trends Biotechnol 2024; 42:575-590. [PMID: 37985335 DOI: 10.1016/j.tibtech.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The escalating global demand for rare earth elements (REEs) and the overabundance of REE-containing waste require innovative technologies for REE recovery from waste to achieve a sustainable supply of REEs while reducing the environmental burden. Biosorption mediated by peptides or proteins has emerged as a promising approach for selective REE recovery. To date, multiple peptides and proteins with high REE-binding affinity and selectivity have been discovered, and various strategies are being exploited to engineer robust and reusable biosorptive materials for selective REE recovery. This review highlights recent advances in discovering and engineering peptides and proteins for REE recovery. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dong Wang
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Jaufer AM, Bouhadana A, Fanucci GE. Hydrophobic Clusters Regulate Surface Hydration Dynamics of Bacillus subtilis Lipase A. J Phys Chem B 2024; 128:3919-3928. [PMID: 38628066 DOI: 10.1021/acs.jpcb.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The surface hydration diffusivity of Bacillus subtilis Lipase A (BSLA) has been characterized by low-field Overhauser dynamic nuclear polarization (ODNP) relaxometry using a series of spin-labeled constructs. Sites for spin-label incorporation were previously designed via an atomistic computational approach that screened for surface exposure, reflective of the surface hydration comparable to other proteins studied by this method, as well as minimal impact on protein function, dynamics, and structure of BSLA by excluding any surface site that participated in greater than 30% occupancy of a hydrogen bonding network within BSLA. Experimental ODNP relaxometry coupling factor results verify the overall surface hydration behavior for these BSLA spin-labeled sites similar to other globular proteins. Here, by plotting the ODNP parameters of relative diffusive water versus the relative bound water, we introduce an effective "phase-space" analysis, which provides a facile visual comparison of the ODNP parameters of various biomolecular systems studied to date. We find notable differences when comparing BSLA to other systems, as well as when comparing different clusters on the surface of BSLA. Specifically, we find a grouping of sites that correspond to the spin-label surface location within the two main hydrophobic core clusters of the branched aliphatic amino acids isoleucine, leucine, and valine cores observed in the BSLA crystal structure. The results imply that hydrophobic clustering may dictate local surface hydration properties, perhaps through modulation of protein conformations and samplings of the unfolded states, providing insights into how the dynamics of the hydration shell is coupled to protein motion and fluctuations.
Collapse
Affiliation(s)
- Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Bouhadana
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Zheng Z, Goncearenco A, Berezovsky IN. Back in time to the Gly-rich prototype of the phosphate binding elementary function. Curr Res Struct Biol 2024; 7:100142. [PMID: 38655428 PMCID: PMC11035071 DOI: 10.1016/j.crstbi.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Binding of nucleotides and their derivatives is one of the most ancient elementary functions dating back to the Origin of Life. We review here the works considering one of the key elements in binding of (di)nucleotide-containing ligands - phosphate binding. We start from a brief discussion of major participants, conditions, and events in prebiotic evolution that resulted in the Origin of Life. Tracing back to the basic functions, including metal and phosphate binding, and, potentially, formation of primitive protein-protein interactions, we focus here on the phosphate binding. Critically assessing works on the structural, functional, and evolutionary aspects of phosphate binding, we perform a simple computational experiment reconstructing its most ancient and generic sequence prototype. The profiles of the phosphate binding signatures have been derived in form of position-specific scoring matrices (PSSMs), their peculiarities depending on the type of the ligands have been analyzed, and evolutionary connections between them have been delineated. Then, the apparent prototype that gave rise to all relevant phosphate-binding signatures had also been reconstructed. We show that two major signatures of the phosphate binding that discriminate between the binding of dinucleotide- and nucleotide-containing ligands are GxGxxG and GxxGxG, respectively. It appears that the signature archetypal for dinucleotide-containing ligands is more generic, and it can frequently bind phosphate groups in nucleotide-containing ligands as well. The reconstructed prototype's key signature GxGGxG underlies the role of glycine residues in providing flexibility and interactions necessary for binding the phosphate groups. The prototype also contains other ancient amino acids, valine, and alanine, showing versatility towards evolutionary design and functional diversification.
Collapse
Affiliation(s)
- Zejun Zheng
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | | | - Igor N. Berezovsky
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore
| |
Collapse
|
11
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble functional analogues of integral membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540044. [PMID: 38496615 PMCID: PMC10942269 DOI: 10.1101/2023.05.09.540044] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
|
12
|
Koch J, Romero‐Romero S, Höcker B. Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels. Protein Sci 2024; 33:e4926. [PMID: 38380781 PMCID: PMC10880431 DOI: 10.1002/pro.4926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Over the past decades, the TIM-barrel fold has served as a model system for the exploration of how changes in protein sequences affect their structural, stability, and functional characteristics, and moreover, how this information can be leveraged to design proteins from the ground up. After numerous attempts to design de novo proteins with this specific fold, sTIM11 was the first validated de novo design of an idealized four-fold symmetric TIM barrel. Subsequent efforts to enhance the stability of this initial design resulted in the development of DeNovoTIMs, a family of de novo TIM barrels with various stabilizing mutations. In this study, we present an investigation into the biophysical and thermodynamic effects upon introducing a varying number of stabilizing mutations per quarter along the sequence of a four-fold symmetric TIM barrel. We compared the base design DeNovoTIM0 without any stabilizing mutations with variants containing mutations in one, two, three, and all four quarters-designated TIM1q, TIM2q, TIM3q, and DeNovoTIM6, respectively. This analysis revealed a stepwise and nonlinear change in the thermodynamic properties that correlated with the number of mutated quarters, suggesting positive nonadditive effects. To shed light on the significance of the location of stabilized quarters, we engineered two variants of TIM2q which contain the same number of mutations but positioned in different quarter locations. Characterization of these TIM2q variants revealed that the mutations exhibit varying effects on the overall protein stability, contingent upon the specific region in which they are introduced. These findings emphasize that the amount and location of stabilized interfaces among the four quarters play a crucial role in shaping the conformational stability of these four-fold symmetric TIM barrels. Analysis of de novo proteins, as described in this study, enhances our understanding of how sequence variations can finely modulate stability in both naturally occurring and computationally designed proteins.
Collapse
Affiliation(s)
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
13
|
Ribeiro AJM, Riziotis IG, Borkakoti N, Thornton JM. Enzyme function and evolution through the lens of bioinformatics. Biochem J 2023; 480:1845-1863. [PMID: 37991346 PMCID: PMC10754289 DOI: 10.1042/bcj20220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Enzymes have been shaped by evolution over billions of years to catalyse the chemical reactions that support life on earth. Dispersed in the literature, or organised in online databases, knowledge about enzymes can be structured in distinct dimensions, either related to their quality as biological macromolecules, such as their sequence and structure, or related to their chemical functions, such as the catalytic site, kinetics, mechanism, and overall reaction. The evolution of enzymes can only be understood when each of these dimensions is considered. In addition, many of the properties of enzymes only make sense in the light of evolution. We start this review by outlining the main paradigms of enzyme evolution, including gene duplication and divergence, convergent evolution, and evolution by recombination of domains. In the second part, we overview the current collective knowledge about enzymes, as organised by different types of data and collected in several databases. We also highlight some increasingly powerful computational tools that can be used to close gaps in understanding, in particular for types of data that require laborious experimental protocols. We believe that recent advances in protein structure prediction will be a powerful catalyst for the prediction of binding, mechanism, and ultimately, chemical reactions. A comprehensive mapping of enzyme function and evolution may be attainable in the near future.
Collapse
Affiliation(s)
- Antonio J. M. Ribeiro
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Ioannis G. Riziotis
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Neera Borkakoti
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Janet M. Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| |
Collapse
|
14
|
Lei L, Burton ZF. The 3 31 Nucleotide Minihelix tRNA Evolution Theorem and the Origin of Life. Life (Basel) 2023; 13:2224. [PMID: 38004364 PMCID: PMC10672568 DOI: 10.3390/life13112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.
Collapse
Affiliation(s)
- Lei Lei
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA;
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Romero-Romero S, Lindner S, Ferruz N. Exploring the Protein Sequence Space with Global Generative Models. Cold Spring Harb Perspect Biol 2023; 15:a041471. [PMID: 37848247 PMCID: PMC10626256 DOI: 10.1101/cshperspect.a041471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Recent advancements in specialized large-scale architectures for training images and language have profoundly impacted the field of computer vision and natural language processing (NLP). Language models, such as the recent ChatGPT and GPT-4, have demonstrated exceptional capabilities in processing, translating, and generating human language. These breakthroughs have also been reflected in protein research, leading to the rapid development of numerous new methods in a short time, with unprecedented performance. Several of these models have been developed with the goal of generating sequences in novel regions of the protein space. In this work, we provide an overview of the use of protein generative models, reviewing (1) language models for the design of novel artificial proteins, (2) works that use non-transformer architectures, and (3) applications in directed evolution approaches.
Collapse
Affiliation(s)
| | | | - Noelia Ferruz
- Barcelona Institute of Molecular Biology, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Michel F, Romero‐Romero S, Höcker B. Retracing the evolution of a modern periplasmic binding protein. Protein Sci 2023; 32:e4793. [PMID: 37788980 PMCID: PMC10601554 DOI: 10.1002/pro.4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.
Collapse
Affiliation(s)
- Florian Michel
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
17
|
Riziotis IG, Ribeiro AJM, Borkakoti N, Thornton JM. The 3D Modules of Enzyme Catalysis: Deconstructing Active Sites into Distinct Functional Entities. J Mol Biol 2023; 435:168254. [PMID: 37652131 DOI: 10.1016/j.jmb.2023.168254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Enzyme catalysis is governed by a limited toolkit of residues and organic or inorganic co-factors. Therefore, it is expected that recurring residue arrangements will be found across the enzyme space, which perform a defined catalytic function, are structurally similar and occur in unrelated enzymes. Leveraging the integrated information in the Mechanism and Catalytic Site Atlas (M-CSA) (enzyme structure, sequence, catalytic residue annotations, catalysed reaction, detailed mechanism description), 3D templates were derived to represent compact groups of catalytic residues. A fuzzy template-template search, allowed us to identify those recurring motifs, which are conserved or convergent, that we define as the "modules of enzyme catalysis". We show that a large fraction of these modules facilitate binding of metal ions, co-factors and substrates, and are frequently the result of convergent evolution. A smaller number of convergent modules perform a well-defined catalytic role, such as the variants of the catalytic triad (i.e. Ser-His-Asp/Cys-His-Asp) and the saccharide-cleaving Asp/Glu triad. It is also shown that enzymes whose functions have diverged during evolution preserve regions of their active site unaltered, as shown by modules performing similar or identical steps of the catalytic mechanism. We have compiled a comprehensive library of catalytic modules, that characterise a broad spectrum of enzymes. These modules can be used as templates in enzyme design and for better understanding catalysis in 3D.
Collapse
Affiliation(s)
- Ioannis G Riziotis
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| | - António J M Ribeiro
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Neera Borkakoti
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Janet M Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| |
Collapse
|
18
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
19
|
Subramanian C, Yun MK, Frank MM, Rock CO. Lysophosphatidylglycerol (LPG) phospholipase D maintains membrane homeostasis in Staphylococcus aureus by converting LPG to lysophosphatidic acid. J Biol Chem 2023; 299:104863. [PMID: 37236358 PMCID: PMC10404611 DOI: 10.1016/j.jbc.2023.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Lysophospholipids are deacylated derivatives of their bilayer forming phospholipid counterparts that are present at low concentrations in cells. Phosphatidylglycerol (PG) is the principal membrane phospholipid in Staphylococcus aureus and lysophosphatidylglycerol (LPG) is detected in low abundance. Here, we used a mass spectrometry screen to identify locus SAUSA300_1020 as the gene responsible for maintaining low concentrations of 1-acyl-LPG in S. aureus. The SAUSA300_1020 gene encodes a protein with a predicted amino terminal transmembrane α-helix attached to a globular glycerophosphodiester phosphodiesterase (GDPD) domain. We determined that the purified protein lacking the hydrophobic helix (LpgDΔN) possesses cation-dependent lysophosphatidylglycerol phospholipase D activity that generates both lysophosphatidic acid (LPA) and cyclic-LPA products and hydrolyzes cyclic-LPA to LPA. Mn2+ was the highest affinity cation and stabilized LpgDΔN to thermal denaturation. LpgDΔN was not specific for the phospholipid headgroup and degraded 1-acyl-LPG, but not 2-acyl-LPG. Furthermore, a 2.1 Å crystal structure shows that LpgDΔN adopts the GDPD variation of the TIM barrel architecture except for the length and positioning of helix α6 and sheet β7. These alterations create a hydrophobic diffusion path for LPG to access the active site. The LpgD active site has the canonical GDPD metal binding and catalytic residues, and our biochemical characterization of site-directed mutants support a two-step mechanism involving a cyclic-LPA intermediate. Thus, the physiological function of LpgD in S. aureus is to convert LPG to LPA, which is re-cycled into the PG biosynthetic pathway at the LPA acyltransferase step to maintain membrane PG molecular species homeostasis.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mi-Kyung Yun
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew M Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
20
|
Kordes S, Beck J, Shanmugaratnam S, Flecks M, Höcker B. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs. Protein Eng Des Sel 2023; 36:gzad012. [PMID: 37707513 DOI: 10.1093/protein/gzad012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Computational protein design promises the ability to build tailor-made proteins de novo. While a range of de novo proteins have been constructed so far, the majority of these designs have idealized topologies that lack larger cavities which are necessary for the incorporation of small molecule binding sites or enzymatic functions. One attractive target for enzyme design is the TIM-barrel fold, due to its ubiquity in nature and capability to host versatile functions. With the successful de novo design of a 4-fold symmetric TIM barrel, sTIM11, an idealized, minimalistic scaffold was created. In this work, we attempted to extend this de novo TIM barrel by incorporating a helix-loop-helix motif into its βα-loops by applying a physics-based modular design approach using Rosetta. Further diversification was performed by exploiting the symmetry of the scaffold to integrate two helix-loop-helix motifs into the scaffold. Analysis with AlphaFold2 and biochemical characterization demonstrate the formation of additional α-helical secondary structure elements supporting the successful extension as intended.
Collapse
Affiliation(s)
- Sina Kordes
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Julian Beck
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | | | - Merle Flecks
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
21
|
Michel F, Shanmugaratnam S, Romero-Romero S, Höcker B. Structures of permuted halves of a modern ribose-binding protein. Acta Crystallogr D Struct Biol 2023; 79:40-49. [PMID: 36601806 PMCID: PMC9815098 DOI: 10.1107/s205979832201186x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Periplasmic binding proteins (PBPs) are a class of proteins that participate in the cellular transport of various ligands. They have been used as model systems to study mechanisms in protein evolution, such as duplication, recombination and domain swapping. It has been suggested that PBPs evolved from precursors half their size. Here, the crystal structures of two permuted halves of a modern ribose-binding protein (RBP) from Thermotoga maritima are reported. The overexpressed proteins are well folded and show a monomer-dimer equilibrium in solution. Their crystal structures show partially noncanonical PBP-like fold type I conformations with structural deviations from modern RBPs. One of the half variants forms a dimer via segment swapping, suggesting a high degree of malleability. The structural findings on these permuted halves support the evolutionary hypothesis that PBPs arose via a duplication event of a flavodoxin-like protein and further support a domain-swapping step that might have occurred during the evolution of the PBP-like fold, a process that is necessary to generate the characteristic motion of PBPs essential to perform their functions.
Collapse
Affiliation(s)
- Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | | | | | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany,Correspondence e-mail:
| |
Collapse
|
22
|
Chu AE, Fernandez D, Liu J, Eguchi RR, Huang PS. De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design. BIODESIGN RESEARCH 2022; 2022:9842315. [PMID: 37850141 PMCID: PMC10521652 DOI: 10.34133/2022/9842315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 10/19/2023] Open
Abstract
The ability to finely control the structure of protein folds is an important prerequisite to functional protein design. The TIM barrel fold is an important target for these efforts as it is highly enriched for diverse functions in nature. Although a TIM barrel protein has been designed de novo, the ability to finely alter the curvature of the central beta barrel and the overall architecture of the fold remains elusive, limiting its utility for functional design. Here, we report the de novo design of a TIM barrel with ovoid (twofold) symmetry, drawing inspiration from natural beta and TIM barrels with ovoid curvature. We use an autoregressive backbone sampling strategy to implement our hypothesis for elongated barrel curvature, followed by an iterative enrichment sequence design protocol to obtain sequences which yield a high proportion of successfully folding designs. Designed sequences are highly stable and fold to the designed barrel curvature as determined by a 2.1 Å resolution crystal structure. The designs show robustness to drastic mutations, retaining high melting temperatures even when multiple charged residues are buried in the hydrophobic core or when the hydrophobic core is ablated to alanine. As a scaffold with a greater capacity for hosting diverse hydrogen bonding networks and installation of binding pockets or active sites, the ovoid TIM barrel represents a major step towards the de novo design of functional TIM barrels.
Collapse
Affiliation(s)
- Alexander E. Chu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, And Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
| | - Jingjia Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Raphael R. Eguchi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Po-Ssu Huang
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Gao S, Klinman JP. Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts. Curr Opin Struct Biol 2022; 75:102434. [PMID: 35872562 PMCID: PMC9901422 DOI: 10.1016/j.sbi.2022.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023]
Abstract
With the growing acceptance of the contribution of protein conformational ensembles to enzyme catalysis and regulation, research in the field of protein dynamics has shifted toward an understanding of the atomistic properties of protein dynamical networks and the mechanisms and time scales that control such behavior. A full description of an enzymatic reaction coordinate is expected to extend beyond the active site and include site-specific networks that communicate with the protein/water interface. Advances in experimental tools for the spatial resolution of thermal activation pathways are being complemented by biophysical methods for visualizing dynamics in real time. An emerging multidimensional model integrates the impacts of bound substrate/effector on the distribution of protein substates that are in rapid equilibration near room temperature with reaction-specific protein embedded heat transfer conduits.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States. https://twitter.com/S_H_Gao
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
24
|
Matsumura I, Patrick WM. Dan Tawfik's Lessons for Protein Engineers about Enzymes Adapting to New Substrates. Biochemistry 2022; 62:158-162. [PMID: 35820168 PMCID: PMC9851151 DOI: 10.1021/acs.biochem.2c00230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Natural evolution has been creating new complex systems for billions of years. The process is spontaneous and requires neither intelligence nor moral purpose but is nevertheless difficult to understand. The late Dan Tawfik spent years studying enzymes as they adapted to recognize new substrates. Much of his work focused on gaining fundamental insights, so the practical utility of his experiments may not be obvious even to accomplished protein engineers. Here we focus on two questions fundamental to any directed evolution experiment. Which proteins are the best starting points for such experiments? Which trait(s) of the chosen parental protein should be evolved to achieve the desired outcome? We summarize Tawfik's contributions to our understanding of these problems, to honor his memory and encourage those unfamiliar with his ideas to read his publications.
Collapse
Affiliation(s)
- Ichiro Matsumura
- O.
Wayne Rollins Research Center, 1510 Clifton Road NE, Room 4001, Atlanta, Georgia 30322, United States,E-mail:
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand,E-mail:
| |
Collapse
|
25
|
Jayaraman V, Toledo‐Patiño S, Noda‐García L, Laurino P. Mechanisms of protein evolution. Protein Sci 2022; 31:e4362. [PMID: 35762715 PMCID: PMC9214755 DOI: 10.1002/pro.4362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022]
Abstract
How do proteins evolve? How do changes in sequence mediate changes in protein structure, and in turn in function? This question has multiple angles, ranging from biochemistry and biophysics to evolutionary biology. This review provides a brief integrated view of some key mechanistic aspects of protein evolution. First, we explain how protein evolution is primarily driven by randomly acquired genetic mutations and selection for function, and how these mutations can even give rise to completely new folds. Then, we also comment on how phenotypic protein variability, including promiscuity, transcriptional and translational errors, may also accelerate this process, possibly via "plasticity-first" mechanisms. Finally, we highlight open questions in the field of protein evolution, with respect to the emergence of more sophisticated protein systems such as protein complexes, pathways, and the emergence of pre-LUCA enzymes.
Collapse
Affiliation(s)
- Vijay Jayaraman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Saacnicteh Toledo‐Patiño
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Lianet Noda‐García
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
26
|
Romero-Rivera A, Corbella M, Parracino A, Patrick WM, Kamerlin SCL. Complex Loop Dynamics Underpin Activity, Specificity, and Evolvability in the (βα) 8 Barrel Enzymes of Histidine and Tryptophan Biosynthesis. JACS AU 2022; 2:943-960. [PMID: 35557756 PMCID: PMC9088769 DOI: 10.1021/jacsau.2c00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 05/16/2023]
Abstract
Enzymes are conformationally dynamic, and their dynamical properties play an important role in regulating their specificity and evolvability. In this context, substantial attention has been paid to the role of ligand-gated conformational changes in enzyme catalysis; however, such studies have focused on tremendously proficient enzymes such as triosephosphate isomerase and orotidine 5'-monophosphate decarboxylase, where the rapid (μs timescale) motion of a single loop dominates the transition between catalytically inactive and active conformations. In contrast, the (βα)8-barrels of tryptophan and histidine biosynthesis, such as the specialist isomerase enzymes HisA and TrpF, and the bifunctional isomerase PriA, are decorated by multiple long loops that undergo conformational transitions on the ms (or slower) timescale. Studying the interdependent motions of multiple slow loops, and their role in catalysis, poses a significant computational challenge. This work combines conventional and enhanced molecular dynamics simulations with empirical valence bond simulations to provide rich details of the conformational behavior of the catalytic loops in HisA, PriA, and TrpF, and the role of their plasticity in facilitating bifunctionality in PriA and evolved HisA variants. In addition, we demonstrate that, similar to other enzymes activated by ligand-gated conformational changes, loops 3 and 4 of HisA and PriA act as gripper loops, facilitating the isomerization of the large bulky substrate ProFAR, albeit now on much slower timescales. This hints at convergent evolution on these different (βα)8-barrel scaffolds. Finally, our work reemphasizes the potential of engineering loop dynamics as a tool to artificially manipulate the catalytic repertoire of TIM-barrel proteins.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Antonietta Parracino
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, 6012 Wellington, New Zealand
| | | |
Collapse
|
27
|
del Moral-Morales A, Salgado-Albarrán M, Ortiz-Gutiérrez E, Pérez-Hernández G, Soto-Reyes E. Transcriptomic and Drug Discovery Analyses Reveal Natural Compounds Targeting the KDM4 Subfamily as Promising Adjuvant Treatments in Cancer. Front Genet 2022; 13:860924. [PMID: 35480330 PMCID: PMC9036480 DOI: 10.3389/fgene.2022.860924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
KDM4 proteins are a subfamily of histone demethylases that target the trimethylation of lysines 9 and 36 of histone H3, which are associated with transcriptional repression and elongation respectively. Their deregulation in cancer may lead to chromatin structure alteration and transcriptional defects that could promote malignancy. Despite that KDM4 proteins are promising drug targets in cancer therapy, only a few drugs have been described as inhibitors of these enzymes, while studies on natural compounds as possible inhibitors are still needed. Natural compounds are a major source of biologically active substances and many are known to target epigenetic processes such as DNA methylation and histone deacetylation, making them a rich source for the discovery of new histone demethylase inhibitors. Here, using transcriptomic analyses we determined that the KDM4 family is deregulated and associated with a poor prognosis in multiple neoplastic tissues. Also, by molecular docking and molecular dynamics approaches, we screened the COCONUT database to search for inhibitors of natural origin compared to FDA-approved drugs and DrugBank databases. We found that molecules from natural products presented the best scores in the FRED docking analysis. Molecules with sugars, aromatic rings, and the presence of OH or O- groups favor the interaction with the active site of KDM4 subfamily proteins. Finally, we integrated a protein-protein interaction network to correlate data from transcriptomic analysis and docking screenings to propose FDA-approved drugs that could be used as multitarget therapies or in combination with the potential natural inhibitors of KDM4 enzymes. This study highlights the relevance of the KDM4 family in cancer and proposes natural compounds that could be used as potential therapies.
Collapse
Affiliation(s)
- Aylin del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Marisol Salgado-Albarrán
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Elizabeth Ortiz-Gutiérrez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| |
Collapse
|
28
|
Esposito N, Konas DW, Goodey NM. Indole-3-Glycerol Phosphate Synthase From Mycobacterium tuberculosis: A Potential New Drug Target. Chembiochem 2022; 23:e202100314. [PMID: 34383995 PMCID: PMC9041893 DOI: 10.1002/cbic.202100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/29/2021] [Indexed: 01/21/2023]
Abstract
Tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis, affects millions of people worldwide. Several TB drugs have lost efficacy due to emerging drug resistance and new anti-TB targets are needed. Recent research suggests that indole-3-glycerol phosphate synthase (IGPS) in M. tuberculosis (MtIGPS) could be such a target. IGPS is a (β/α)8 -barrel enzyme that catalyzes the conversion of 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate (CdRP) into indole-glycerol-phosphate (IGP) in the bacterial tryptophan biosynthetic pathway. M. tuberculosis over expresses the tryptophan pathway genes during an immune response and inhibition of MtIGPS allows CD4 T-cells to more effectively fight against M. tuberculosis. Here we review the published data on MtIGPS expression, kinetics, mechanism, and inhibition. We also discuss MtIGPS crystal structures and compare them to other IGPS structures to reveal potential structure-function relationships of interest for the purposes of drug design and biocatalyst engineering.
Collapse
Affiliation(s)
- Nikolas Esposito
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - David W. Konas
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Nina M. Goodey
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
29
|
Kordes S, Romero-Romero S, Lutz L, Höcker B. A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Sci 2021; 31:513-527. [PMID: 34865275 PMCID: PMC8820119 DOI: 10.1002/pro.4249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
Protein stability can be fine‐tuned by modifying different structural features such as hydrogen‐bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three‐dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced. PDB Code(s): 7OSU, 7OT7, 7OSV, 7OT8 and 7P12;
Collapse
Affiliation(s)
- Sina Kordes
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Leonie Lutz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
30
|
Li DD, Wang JL, Liu Y, Li YZ, Zhang Z. Expanded analyses of the functional correlations within structural classifications of glycoside hydrolases. Comput Struct Biotechnol J 2021; 19:5931-5942. [PMID: 34849197 PMCID: PMC8602953 DOI: 10.1016/j.csbj.2021.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023] Open
Abstract
Glycoside hydrolases (GHs) are greatly diverse in sequences and functions, but systematic studies of GH relationships based on structural information are lacking. Here, we report that GHs have multiple evolutionary origins and are structurally derived from 27 homologous superfamilies and 16 folds, but GHs are highly biased to distribute in a few superfamilies and folds. Six of these superfamilies are widely encoded by archaea, bacteria, and eukaryotes, indicating that they may be the most ancient in origin. Most superfamilies vary in enzyme function, and some, such as the superfamilies of (β/α)8-barrel and (α/α)6-barrel structures, exhibit extreme functional diversity; this is highly positively correlated with sequence diversity. More than one-third of glycosidase activities show a phenomenon of convergent evolution, especially the degradation functions of GHs on polysaccharides. The GHs of most superfamilies have relatively narrow environmental distributions, normally with the highest abundance in host-associated environments and a distribution preference for moderate low-temperature and acidic environments. Overall, our expanded analysis facilitates an understanding of complex GH sequence-structure-function relationships and may guide our screening and engineering of GHs.
Collapse
Affiliation(s)
- Dan-Dan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jin-Lan Wang
- National Administration of Health Data, Jinan 250002, China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.,Suzhou Research Institute, Shandong University, Suzhou 215123, China
| |
Collapse
|
31
|
Lindenburg LH, Pantelejevs T, Gielen F, Zuazua-Villar P, Butz M, Rees E, Kaminski CF, Downs JA, Hyvönen M, Hollfelder F. Improved RAD51 binders through motif shuffling based on the modularity of BRC repeats. Proc Natl Acad Sci U S A 2021; 118:e2017708118. [PMID: 34772801 PMCID: PMC8727024 DOI: 10.1073/pnas.2017708118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended β-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.
Collapse
Affiliation(s)
- Laurens H Lindenburg
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Pedro Zuazua-Villar
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Maren Butz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Jessica A Downs
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| |
Collapse
|
32
|
Pinto GP, Corbella M, Demkiv AO, Kamerlin SCL. Exploiting enzyme evolution for computational protein design. Trends Biochem Sci 2021; 47:375-389. [PMID: 34544655 DOI: 10.1016/j.tibs.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
Recent years have seen an explosion of interest in understanding the physicochemical parameters that shape enzyme evolution, as well as substantial advances in computational enzyme design. This review discusses three areas where evolutionary information can be used as part of the design process: (i) using ancestral sequence reconstruction (ASR) to generate new starting points for enzyme design efforts; (ii) learning from how nature uses conformational dynamics in enzyme evolution to mimic this process in silico; and (iii) modular design of enzymes from smaller fragments, again mimicking the process by which nature appears to create new protein folds. Using showcase examples, we highlight the importance of incorporating evolutionary information to continue to push forward the boundaries of enzyme design studies.
Collapse
Affiliation(s)
- Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
33
|
Ferruz N, Michel F, Lobos F, Schmidt S, Höcker B. Fuzzle 2.0: Ligand Binding in Natural Protein Building Blocks. Front Mol Biosci 2021; 8:715972. [PMID: 34485385 PMCID: PMC8416435 DOI: 10.3389/fmolb.2021.715972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Modern proteins have been shown to share evolutionary relationships via subdomain-sized fragments. The assembly of such fragments through duplication and recombination events led to the complex structures and functions we observe today. We previously implemented a pipeline that identified more than 1,000 of these fragments that are shared by different protein folds and developed a web interface to analyze and search for them. This resource named Fuzzle helps structural and evolutionary biologists to identify and analyze conserved parts of a protein but it also provides protein engineers with building blocks for example to design proteins by fragment combination. Here, we describe a new version of this web resource that was extended to include ligand information. This addition is a significant asset to the database since now protein fragments that bind specific ligands can be identified and analyzed. Often the mode of ligand binding is conserved in proteins thereby supporting a common evolutionary origin. The same can now be explored for subdomain-sized fragments within this database. This ligand binding information can also be used in protein engineering to graft binding pockets into other protein scaffolds or to transfer functional sites via recombination of a specific fragment. Fuzzle 2.0 is freely available at https://fuzzle.uni-bayreuth.de/2.0.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Steffen Schmidt
- Computational Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
34
|
Romero-Romero S, Costas M, Silva Manzano DA, Kordes S, Rojas-Ortega E, Tapia C, Guerra Y, Shanmugaratnam S, Rodríguez-Romero A, Baker D, Höcker B, Fernández-Velasco DA. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. J Mol Biol 2021; 433:167153. [PMID: 34271011 PMCID: PMC8404036 DOI: 10.1016/j.jmb.2021.167153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The TIM barrel is a versatile fold to understand structure-stability relationships. A collection of de novo TIM barrels with improved hydrophobic cores was designed. DeNovoTIMs are reversible in chemical and thermal unfolding, which is uncommon in TIM barrels. Epistatic effects play a central role in DeNovoTIMs stabilization. DeNovoTIMs navigate a previously uncharted region of the stability landscape.
The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (β/⍺)8-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Daniel-Adriano Silva Manzano
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Erendira Rojas-Ortega
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Cinthya Tapia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Yasel Guerra
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David Baker
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
35
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Wiese JG, Shanmugaratnam S, Höcker B. Extension of a de novo TIM barrel with a rationally designed secondary structure element. Protein Sci 2021; 30:982-989. [PMID: 33723882 PMCID: PMC8040861 DOI: 10.1002/pro.4064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
The ability to construct novel enzymes is a major aim in de novo protein design. A popular enzyme fold for design attempts is the TIM barrel. This fold is a common topology for enzymes and can harbor many diverse reactions. The recent de novo design of a four-fold symmetric TIM barrel provides a well understood minimal scaffold for potential enzyme designs. Here we explore opportunities to extend and diversify this scaffold by adding a short de novo helix on top of the barrel. Due to the size of the protein, we developed a design pipeline based on computational ab initio folding that solves a less complex sub-problem focused around the helix and its vicinity and adapt it to the entire protein. We provide biochemical characterization and a high-resolution X-ray structure for one variant and compare it to our design model. The successful extension of this robust TIM-barrel scaffold opens opportunities to diversify it towards more pocket like arrangements and as such can be considered a building block for future design of binding or catalytic sites.
Collapse
Affiliation(s)
- Jonas Gregor Wiese
- Max Planck Institute for Developmental BiologyTübingenGermany
- Present address:
Technical University of MunichMunichGermany
| | - Sooruban Shanmugaratnam
- Max Planck Institute for Developmental BiologyTübingenGermany
- University of Bayreuth, Department for BiochemistryBayreuthGermany
| | - Birte Höcker
- Max Planck Institute for Developmental BiologyTübingenGermany
- University of Bayreuth, Department for BiochemistryBayreuthGermany
| |
Collapse
|
37
|
Yin M, Goncearenco A, Berezovsky IN. Deriving and Using Descriptors of Elementary Functions in Rational Protein Design. FRONTIERS IN BIOINFORMATICS 2021; 1:657529. [PMID: 36303771 PMCID: PMC9581014 DOI: 10.3389/fbinf.2021.657529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 06/26/2024] Open
Abstract
The rational design of proteins with desired functions requires a comprehensive description of the functional building blocks. The evolutionary conserved functional units constitute nature's toolbox; however, they are not readily available to protein designers. This study focuses on protein units of subdomain size that possess structural properties and amino acid residues sufficient to carry out elementary reactions in the catalytic mechanisms. The interactions within such elementary functional loops (ELFs) and the interactions with the surrounding protein scaffolds constitute the descriptor of elementary function. The computational approach to deriving descriptors directly from protein sequences and structures and applying them in rational design was implemented in a proof-of-concept DEFINED-PROTEINS software package. Once the descriptor is obtained, the ELF can be fitted into existing or novel scaffolds to obtain the desired function. For instance, the descriptor may be used to determine the necessary spatial restraints in a fragment-based grafting protocol. We illustrated the approach by applying it to well-known cases of ELFs, including phosphate-binding P-loop, diphosphate-binding glycine-rich motif, and calcium-binding EF-hand motif, which could be used to jumpstart templates for user applications. The DEFINED-PROTEINS package is available for free at https://github.com/MelvinYin/Defined_Proteins.
Collapse
Affiliation(s)
- Melvin Yin
- Bioinformatics Institute, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institute of Health (NIH), Bethesda, MD, United States
| | - Igor N. Berezovsky
- Bioinformatics Institute, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|