1
|
Saeed A, Klureza MA, Hekstra DR. Mapping Protein Conformational Landscapes from Crystallographic Drug Fragment Screens. J Chem Inf Model 2024; 64:8937-8951. [PMID: 39530154 PMCID: PMC11633654 DOI: 10.1021/acs.jcim.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COnformational LAndscape Visualization (COLAV), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar
A. Saeed
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Margaret A. Klureza
- Department
of Chemistry & Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Doeke R. Hekstra
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- School
of Engineering & Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Leitner DM. Temperature Dependence of Thermal Conductivity of Proteins: Contributions of Thermal Expansion and Grüneisen Parameter. Chemphyschem 2024:e202401017. [PMID: 39632269 DOI: 10.1002/cphc.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
The thermal conductivity of many materials depends on temperature due to several factors, including variation of heat capacity with temperature, changes in vibrational dynamics with temperature, and change in volume with temperature. For proteins some, but not all, of these influences on the variation of thermal conductivity with temperature have been investigated in the past. In this study, we examine the influence of change in volume, and corresponding changes in vibrational dynamics, on the temperature dependence of the thermal conductivity. Using a measured value for the coefficient of thermal expansion and recently computed values for the Grüneisen parameter of proteins we find that the thermal conductivity increases with increasing temperature due to change in volume with temperature. We compare the impact of thermal expansion on the variation of the thermal conductivity with temperature found in this study with contributions of heat capacity and anharmonic coupling examined previously. Using values of thermal transport coefficients computed for proteins we also model heating of water in a protein solution following photoexcitation.
Collapse
Affiliation(s)
- David M Leitner
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
3
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
4
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 PMCID: PMC11570944 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D Variability Analysis Reveals a Hidden Conformational Change Controlling Ammonia Transport in Human Asparagine Synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541009. [PMID: 37292727 PMCID: PMC10245805 DOI: 10.1101/2023.05.16.541009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How motions in enzymes might be linked to catalytic function is of considerable general interest. Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we use 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) to identify a functional role for the Arg-142 side chain as a gate that mediates ammonia access to a catalytically relevant intramolecular tunnel. Our 3DVA-derived hypothesis is assessed experimentally, using the R142I variant in which Arg-142 is replaced by isoleucine, and by molecular dynamics (MD) simulations on independent, computational models of the WT human ASNS monomer and its catalytically relevant, ternary complex with β-aspartyl-AMP and MgPPi. Residue fluctuations in the MD trajectories for the human ASNS monomer are consistent with those determined for 3DVA-derived structures. These MD simulations also indicate that the gating function of Arg-142 is separate from the molecular events that form a continuous tunnel linking the two active sites. Experimental support for Arg-142 playing a role in intramolecular ammonia translocation is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS. MD simulations of computational models for the R142I variant and the R142I/β-aspartyl-AMP/MgPPi ternary complex provide a possible molecular basis for this observation. Overall, the combination of 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alanya. J. Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze della vita e dell’ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, 75015 Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, 69367 Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| |
Collapse
|
6
|
Poudel H, Wales DJ, Leitner DM. Vibrational Energy Landscapes and Energy Flow in GPCRs. J Phys Chem B 2024; 128:7568-7576. [PMID: 39058920 DOI: 10.1021/acs.jpcb.4c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
We construct and analyze disconnectivity graphs to provide the first graphical representation of the vibrational energy landscape of a protein, in this study β2AR, a G-protein coupled receptor (GPCR), in active and inactive states. The graphs, which indicate the relative free energy of each residue and the minimum free energy barriers for energy transfer between them, reveal important composition, structural and dynamic properties that mediate the flow of energy. Prolines and glycines, which contribute to GPCR plasticity and function, are identified as bottlenecks to energy transport along the backbone from which alternative pathways for energy transport via nearby noncovalent contacts emerge, seen also in the analysis of first passage time (FPT) distributions presented here. Striking differences between the disconnectivity graphs and FPT distributions for the inactive and active states of β2AR are found where structural and dynamic changes occur upon activation, contributing to allosteric regulation.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David J Wales
- Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge CB2 1EW, U.K
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
7
|
Saeed AA, Klureza MA, Hekstra DR. Mapping protein conformational landscapes from crystallographic drug fragment screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605395. [PMID: 39131376 PMCID: PMC11312500 DOI: 10.1101/2024.07.29.605395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COLAV (COnformational LAndscape Visualization), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP-1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens also enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar A. Saeed
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
8
|
Wang Z, Zhang S, Xu Q, Li Z, Gu X, Wood K, García Sakai V, Wan Q, Chu XQ. Experimental Evidence for the Role of Dynamics in pH-Dependent Enzymatic Activity. J Phys Chem B 2024; 128:5814-5822. [PMID: 38726956 DOI: 10.1021/acs.jpcb.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Enzymatic activity is heavily influenced by pH, but the rationale for the dynamical mechanism of pH-dependent enzymatic activity has not been fully understood. In this work, combined neutron scattering techniques, including quasielastic neutron scattering (QENS) and small angle neutron scattering (SANS), are used to study the structural and dynamic changes of a model enzyme, xylanase, under different pH and temperature environments. The QENS results reveal that xylanase at optimal pH exhibits faster relaxational dynamics and a lower energy barrier between conformational substates. The SANS results demonstrate that pH affects both xylanase's stability and monodispersity. Our findings indicate that enzymes have optimized stability and function under their optimal pH conditions, with both structure and dynamics being affected. The current study offers valuable insights into enzymatic functionality mechanisms, allowing for broad industrial applications.
Collapse
Affiliation(s)
- Zhixin Wang
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Shengkai Zhang
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Qin Xu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Li
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xudong Gu
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Victoria García Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Qun Wan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizer, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiang-Qiang Chu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
9
|
Gao S, Wu XT, Zhang W, Richardson T, Barrow SL, Thompson-Kucera CA, Iavarone AT, Klinman JP. Temporal Resolution of Activity-Related Solvation Dynamics in the TIM Barrel Enzyme Murine Adenosine Deaminase. ACS Catal 2024; 14:4554-4567. [PMID: 39099600 PMCID: PMC11296675 DOI: 10.1021/acscatal.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Murine adenosine deaminase (mADA) is a prototypic system for studying the thermal activation of active site chemistry within the TIM barrel family of enzyme reactions. Previous temperature-dependent hydrogen deuterium exchange studies under various conditions have identified interconnected thermal networks for heat transfer from opposing protein-solvent interfaces to active site residues in mADA. One of these interfaces contains a solvent exposed helix-loop-helix moiety that presents the hydrophobic face of its long α-helix to the backside of bound substrate. Herein we pursue the time and temperature dependence of solvation dynamics at the surface of mADA, for comparison to established kinetic parameters that represent active site chemistry. We first created a modified protein devoid of native tryptophans with close to native kinetic behavior. Single site-specific tryptophan mutants were back inserted into each of the four positions where native tryptophans reside. Measurements of nanosecond fluorescence relaxation lifetimes and Stokes shift decays, that reflect time dependent environmental reoroganization around the photo-excited state of Trp*, display minimal temperature dependences. These regions serve as controls for the behavior of a new single tryptophan inserted into a solvent exposed region near the helix-loop-helix moiety located behind the bound substrate, Lys54Trp. This installed Trp displays a significantly elevated value for Ea ( k Stokes shift ) ; further, when Phe61 within the long helix positioned behind bound substrate is replaced by a series of aliphatic hydrophobic side chains, the trends in Ea ( k Stokes shift ) mirror the earlier reported impact of the same series of function-altering hydrophobic side chains on the activation energy of catalysis, Ea ( k cat ) .The reported experimental findings implicate a solvent initiated and rapid (>ns) protein restructuring that contributes to the enthalpic activation barrier to catalysis in mADA.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Xin Ting Wu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tyre Richardson
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Samuel L. Barrow
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Christian A. Thompson-Kucera
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Anthony T. Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
10
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
11
|
Haidar Y, Konermann L. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37314114 DOI: 10.1021/jasms.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques are widely used for probing protein structure and dynamics in solution. H/D exchange (HDX)-MS is one of the most common approaches in this context. HDX is often considered to be a "benign" labeling method, in that it does not perturb protein behavior in solution. However, several studies have reported that D2O pushes unfolding equilibria toward the native state. The origin, and even the existence of this protein stabilization remain controversial. Here we conducted thermal unfolding assays in solution to confirm that deuterated proteins in D2O are more stable, with 2-4 K higher melting temperatures than unlabeled proteins in H2O. Previous studies tentatively attributed this phenomenon to strengthened H-bonds after deuteration, an effect that may arise from the lower zero-point vibrational energy of the deuterated species. Specifically, it was proposed that strengthened water-water bonds (W···W) in D2O lower the solubility of nonpolar side chains. The current work takes a broader view by noting that protein stability in solution also depends on water-protein (W···P) and protein-protein (P···P) H-bonds. To help unravel these contributions, we performed collision-induced unfolding (CIU) experiments on gaseous proteins generated by native electrospray ionization. CIU profiles of deuterated and unlabeled proteins were indistinguishable, implying that P···P contacts are insensitive to deuteration. Thus, protein stabilization in D2O is attributable to solvent effects, rather than alterations of intraprotein H-bonds. Strengthening of W···W contacts represents one possible explanation, but the stabilizing effect of D2O can also originate from weakened W···P bonds. Future work will be required to elucidate which of these two scenarios is correct, or if both contribute to protein stabilization in D2O. In any case, the often-repeated adage that "D-bonds are more stable than H-bonds" does not apply to intramolecular contacts in native proteins.
Collapse
Affiliation(s)
- Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
12
|
Pinelo JEE, Manandhar P, Popovic G, Ray K, Tasdelen MF, Nguyen Q, Iavarone AT, Offenbacher AR, Hudson NE, Sen M. Systematic mapping of the conformational landscape and dynamism of soluble fibrinogen. J Thromb Haemost 2023; 21:1529-1543. [PMID: 36746319 PMCID: PMC10407912 DOI: 10.1016/j.jtha.2023.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fibrinogen is a soluble, multisubunit, and multidomain dimeric protein, which, upon its proteolytic cleavage by thrombin, is converted to insoluble fibrin, initiating polymerization that substantially contributes to clot growth. Fibrinogen contains numerous, transiently accessible "cryptic" epitopes for hemostatic and immunologic proteins, suggesting that fibrinogen exhibits conformational flexibility, which may play functional roles in its temporal and spatial interactions. Hitherto, there have been limited integrative approaches characterizing the solution structure and internal flexibility of fibrinogen. METHODS Here, utilizing a multipronged, biophysical approach involving 2 solution-based techniques, temperature-dependent hydrogen-deuterium exchange mass spectrometry and small angle X-ray scattering, corroborated by negative stain electron microscopy, we present a holistic, conformationally dynamic model of human fibrinogen in solution. RESULTS Our data reveal 4 major and distinct conformations of fibrinogen accommodated by a high degree of internal protein flexibility along its central scaffold. We propose that the fibrinogen structure in the solution consists of a complex, conformational landscape with multiple local minima. This is further supported by the location of numerous point mutations that are linked to dysfibrinogenemia and posttranslational modifications, residing near the identified fibrinogen flexions. CONCLUSION This work provides a molecular basis for the structural "dynamism" of fibrinogen that is expected to influence the broad swath of its functionally diverse macromolecular interactions and fine-tune the structural and mechanical properties of blood clots.
Collapse
Affiliation(s)
- Jose E E Pinelo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Pragya Manandhar
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Grega Popovic
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Katherine Ray
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Mehmet F Tasdelen
- Department of Computer Science, University of Houston, Houston, Texas, USA
| | - Quoc Nguyen
- Department of Mathematics, University of Houston, Houston, Texas, USA
| | - Anthony T Iavarone
- QB3/Chemistry/Mass Spectrometry Facility, University of California, Berkeley, California, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.
| |
Collapse
|
13
|
Abstract
Debate has been simmering for some years regarding the importance of internal thermal motions of enzymes to catalysis. Recent developments in protein design may bring resolution of the more contentious points a little closer.
Collapse
Affiliation(s)
- Jeremy R. H. Tame
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
14
|
Antoniou D, Zoi I, Schwartz SD. Atomistic description of the relationship between protein dynamics and catalysis with transition path sampling. Methods Enzymol 2023; 685:319-340. [PMID: 37245906 PMCID: PMC10228753 DOI: 10.1016/bs.mie.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Despite initial resistance, it has been increasingly accepted that protein dynamics plays a role in enzymatic catalysis. There have been two lines of research. Some works study slow conformational motions that are not coupled to the reaction coordinate, but guide the system towards catalytically competent conformations. Understanding at the atomistic level how this is accomplished has remained elusive except for a few systems. In this review we focus on fast sub-picosecond motions that are coupled to the reaction coordinate. The use of Transition Path Sampling has allowed us an atomistic description of how these rate-promoting vibrational motions are incorporated in the reaction mechanism. We will also show how we used insights from rate-promoting motions in protein design.
Collapse
Affiliation(s)
- Dimitri Antoniou
- Department of Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Ioanna Zoi
- Department of Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Steven D Schwartz
- Department of Biochemistry, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
15
|
Deng H, Qin M, Liu Z, Yang Y, Wang Y, Yao L. Engineering the Active Site Lid Dynamics to Improve the Catalytic Efficiency of Yeast Cytosine Deaminase. Int J Mol Sci 2023; 24:ijms24076592. [PMID: 37047565 PMCID: PMC10095239 DOI: 10.3390/ijms24076592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Conformational dynamics is important for enzyme catalysis. However, engineering dynamics to achieve a higher catalytic efficiency is still challenging. In this work, we develop a new strategy to improve the activity of yeast cytosine deaminase (yCD) by engineering its conformational dynamics. Specifically, we increase the dynamics of the yCD C-terminal helix, an active site lid that controls the product release. The C-terminal is extended by a dynamical single α-helix (SAH), which improves the product release rate by up to ~8-fold, and the overall catalytic rate kcat by up to ~2-fold. It is also shown that the kcat increase is due to the favorable activation entropy change. The NMR H/D exchange data indicate that the conformational dynamics of the transition state analog complex increases as the helix is extended, elucidating the origin of the enhanced catalytic entropy. This study highlights a novel dynamics engineering strategy that can accelerate the overall catalysis through the entropy-driven mechanism.
Collapse
Affiliation(s)
- Hanzhong Deng
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Qin
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Yang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yefei Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
16
|
Loos SAM, Arabha S, Rajabpour A, Hassanali A, Roldán É. Nonreciprocal forces enable cold-to-hot heat transfer between nanoparticles. Sci Rep 2023; 13:4517. [PMID: 36934145 PMCID: PMC10024720 DOI: 10.1038/s41598-023-31583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
We study the heat transfer between two nanoparticles held at different temperatures that interact through nonreciprocal forces, by combining molecular dynamics simulations with stochastic thermodynamics. Our simulations reveal that it is possible to construct nano refrigerators that generate a net heat transfer from a cold to a hot reservoir at the expense of power exerted by the nonreciprocal forces. Applying concepts from stochastic thermodynamics to a minimal underdamped Langevin model, we derive exact analytical expressions predictions for the fluctuations of work, heat, and efficiency, which reproduce thermodynamic quantities extracted from the molecular dynamics simulations. The theory only involves a single unknown parameter, namely an effective friction coefficient, which we estimate fitting the results of the molecular dynamics simulation to our theoretical predictions. Using this framework, we also establish design principles which identify the minimal amount of entropy production that is needed to achieve a certain amount of uncertainty in the power fluctuations of our nano refrigerator. Taken together, our results shed light on how the direction and fluctuations of heat flows in natural and artificial nano machines can be accurately quantified and controlled by using nonreciprocal forces.
Collapse
Affiliation(s)
- Sarah A M Loos
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
- ICTP - International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy.
| | - Saeed Arabha
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, Canada
- Advanced Simulation and Computing Laboratory (ASCL), Imam Khomeini International University, Qazvin, Iran
| | - Ali Rajabpour
- Advanced Simulation and Computing Laboratory (ASCL), Imam Khomeini International University, Qazvin, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Ali Hassanali
- ICTP - International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy
| | - Édgar Roldán
- ICTP - International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy
| |
Collapse
|
17
|
Klinman JP. Dynamical activation of function in metalloenzymes. FEBS Lett 2023; 597:79-91. [PMID: 36239559 PMCID: PMC9839491 DOI: 10.1002/1873-3468.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Formulations of hydrogen tunneling in enzyme-catalysed C-H activation reactions indicate enthalpic barriers to reaction that are independent of chemical steps and dependent on the protein scaffold. A tool to identify catalytically relevant site-specific protein thermal networks has emerged from temperature-dependent hydrogen deuterium exchange (TDHDX). Focusing on mutant enzyme forms with altered activation energies for catalysis, TDHDX provides a comparative analysis of the impact of mutation on Ea for local protein unfolding. Identified thermal networks appear unrelated to protein scaffold conservation and track to the dictates of the catalysed reaction, including sites for metal binding. The positions of thermal networks provide a framework for further understanding of time-dependent, functionally relevant protein motions. Measurement of nanosecond Stokes shifts at the surface of the thermal network in soybean lipoxygenase yields activation energies that are identical to Ea values measured for kcat . This finding identifies a rapid (> nanosecond), long-range and cooperative structural reorganization as the thermal barrier to catalysis. A model for protein dynamics is put forward that integrates broadly distributed protein conformational sampling with protein embedded thermal networks.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
18
|
Tajoddin NN, Konermann L. Structural Dynamics of a Thermally Stressed Monoclonal Antibody Characterized by Temperature-Dependent H/D Exchange Mass Spectrometry. Anal Chem 2022; 94:15499-15509. [DOI: 10.1021/acs.analchem.2c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nastaran N. Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|